IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00124-3.html
   My bibliography  Save this article

Inactivation of Pol θ and C-NHEJ eliminates off-target integration of exogenous DNA

Author

Listed:
  • Alex N. Zelensky

    (Erasmus University Medical Centre)

  • Joost Schimmel

    (Leiden University Medical Centre)

  • Hanneke Kool

    (Leiden University Medical Centre)

  • Roland Kanaar

    (Erasmus University Medical Centre)

  • Marcel Tijsterman

    (Leiden University Medical Centre)

Abstract

Off-target or random integration of exogenous DNA hampers precise genomic engineering and presents a safety risk in clinical gene therapy strategies. Genetic definition of random integration has been lacking for decades. Here, we show that the A-family DNA polymerase θ (Pol θ) promotes random integration, while canonical non-homologous DNA end joining plays a secondary role; cells double deficient for polymerase θ and canonical non-homologous DNA end joining are devoid of any integration events, demonstrating that these two mechanisms define random integration. In contrast, homologous recombination is not reduced in these cells and gene targeting is improved to 100% efficiency. Such complete reversal of integration outcome, from predominately random integration to exclusively gene targeting, provides a rational way forward to improve the efficacy and safety of DNA delivery and gene correction approaches.

Suggested Citation

  • Alex N. Zelensky & Joost Schimmel & Hanneke Kool & Roland Kanaar & Marcel Tijsterman, 2017. "Inactivation of Pol θ and C-NHEJ eliminates off-target integration of exogenous DNA," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00124-3
    DOI: 10.1038/s41467-017-00124-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00124-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00124-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alba Muniesa-Vargas & Carlota Davó-Martínez & Cristina Ribeiro-Silva & Melanie van der Woude & Karen L. Thijssen & Ben Haspels & David Häckes & Ülkem U. Kaynak & Roland Kanaar & Jurgen A. Marteijn & A, 2024. "Persistent TFIIH binding to non-excised DNA damage causes cell and developmental failure," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00124-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.