IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00072-y.html
   My bibliography  Save this article

Anterior cingulate is a source of valence-specific information about value and uncertainty

Author

Listed:
  • Ilya E. Monosov

    (Washington University in St. Louis)

Abstract

Anterior cingulate cortex (ACC) is thought to control a wide range of reward, punishment, and uncertainty-related behaviors. However, how it does so is unclear. Here, in a Pavlovian procedure in which monkeys displayed a diverse repertoire of reward-related, punishment-related, and uncertainty-related behaviors, we show that many ACC-neurons represent expected value and uncertainty in a valence-specific manner, signaling value or uncertainty predictions about either rewards or punishments. Other ACC-neurons signal prediction information about rewards and punishments by displaying excitation to both (rather than excitation to one and inhibition to the other). This diversity in valence representations may support the role of ACC in many behavioral states that are either enhanced by reward and punishment (e.g., vigilance) or specific to either reward or punishment (e.g., approach and avoidance). Also, this first demonstration of punishment-uncertainty signals in the brain suggests that ACC could be a target for the treatment of uncertainty-related disorders of mood.

Suggested Citation

  • Ilya E. Monosov, 2017. "Anterior cingulate is a source of valence-specific information about value and uncertainty," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00072-y
    DOI: 10.1038/s41467-017-00072-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00072-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00072-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colin W. Hoy & David R. Quiroga-Martinez & Eduardo Sandoval & David King-Stephens & Kenneth D. Laxer & Peter Weber & Jack J. Lin & Robert T. Knight, 2023. "Asymmetric coding of reward prediction errors in human insula and dorsomedial prefrontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00072-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.