IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms16054.html
   My bibliography  Save this article

Virus-host relationships of marine single-celled eukaryotes resolved from metatranscriptomics

Author

Listed:
  • Mohammad Moniruzzaman

    (The University of Tennessee)

  • Louie L. Wurch

    (James Madison University)

  • Harriet Alexander

    (Columbia University)

  • Sonya T. Dyhrman

    (Columbia University)

  • Christopher J. Gobler

    (School of Marine and Atmospheric Sciences, Stony Brook University)

  • Steven W. Wilhelm

    (The University of Tennessee)

Abstract

Establishing virus–host relationships has historically relied on culture-dependent approaches. Here we report on the use of marine metatranscriptomics to probe virus–host relationships. Statistical co-occurrence analyses of dsDNA, ssRNA and dsRNA viral markers of polyadenylation-selected RNA sequences from microbial communities dominated by Aureococcus anophagefferens (Quantuck Bay, NY), and diatoms (Narragansett Bay, RI) show active infections by diverse giant viruses (NCLDVs) associated with algal and nonalgal hosts. Ongoing infections of A. anophagefferens by a known Mimiviridae (AaV) occur during bloom peak and decline. Bloom decline is also accompanied by increased activity of viruses other than AaV, including (+) ssRNA viruses. In Narragansett Bay, increased temporal resolution reveals active NCLDVs with both ‘boom-and-bust’ and ‘steady-state infection’-like ecologies that include known as well as novel virus–host interactions. Our approach offers a method for screening active viral infections and develops links between viruses and their potential hosts in situ. Our observations further demonstrate that previously unknown virus–host relationships in marine systems are abundant.

Suggested Citation

  • Mohammad Moniruzzaman & Louie L. Wurch & Harriet Alexander & Sonya T. Dyhrman & Christopher J. Gobler & Steven W. Wilhelm, 2017. "Virus-host relationships of marine single-celled eukaryotes resolved from metatranscriptomics," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms16054
    DOI: 10.1038/ncomms16054
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms16054
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms16054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanpeng Liao & Chen Liu & Shungui Zhou & Chunqin Liu & David J. Eldridge & Chaofan Ai & Steven W. Wilhelm & Brajesh K. Singh & Xiaolong Liang & Mark Radosevich & Qiu-e Yang & Xiang Tang & Zhong Wei & , 2024. "Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Sofia Rigou & Sébastien Santini & Chantal Abergel & Jean-Michel Claverie & Matthieu Legendre, 2022. "Past and present giant viruses diversity explored through permafrost metagenomics," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms16054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.