Author
Listed:
- Malcolm Druett
(Northumbria University, Physics and Electrical Engineering)
- Eamon Scullion
(Northumbria University, Physics and Electrical Engineering)
- Valentina Zharkova
(Northumbria University, Physics and Electrical Engineering)
- Sarah Matthews
(Mullard Space Science Laboratory, University College London)
- Sergei Zharkov
(Hull University, School of Mathematics & Physical Sciences)
- Luc Rouppe Van der Voort
(Institute of Theoretical Astrophysics, University of Oslo)
Abstract
The observations of solar flare onsets show rapid increase of hard and soft X-rays, ultra-violet emission with large Doppler blue shifts associated with plasma upflows, and Hα hydrogen emission with red shifts up to 1–4 Å. Modern radiative hydrodynamic models account well for blue-shifted emission, but struggle to reproduce closely the red-shifted Hα lines. Here we present a joint hydrodynamic and radiative model showing that during the first seconds of beam injection the effects caused by beam electrons can reproduce Hα line profiles with large red-shifts closely matching those observed in a C1.5 flare by the Swedish Solar Telescope. The model also accounts closely for timing and magnitude of upward motion to the corona observed 29 s after the event onset in 171 Å by the Atmospheric Imaging Assembly/Solar Dynamics Observatory.
Suggested Citation
Malcolm Druett & Eamon Scullion & Valentina Zharkova & Sarah Matthews & Sergei Zharkov & Luc Rouppe Van der Voort, 2017.
"Beam electrons as a source of Hα flare ribbons,"
Nature Communications, Nature, vol. 8(1), pages 1-13, August.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15905
DOI: 10.1038/ncomms15905
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15905. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.