IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15899.html
   My bibliography  Save this article

Non-equilibrium steady states in supramolecular polymerization

Author

Listed:
  • Alessandro Sorrenti

    (University of Strasbourg, CNRS, ISIS UMR 7006)

  • Jorge Leira-Iglesias

    (University of Strasbourg, CNRS, ISIS UMR 7006)

  • Akihiro Sato

    (University of Strasbourg, CNRS, ISIS UMR 7006)

  • Thomas M. Hermans

    (University of Strasbourg, CNRS, ISIS UMR 7006)

Abstract

Living systems use fuel-driven supramolecular polymers such as actin to control important cell functions. Fuel molecules like ATP are used to control when and where such polymers should assemble and disassemble. The cell supplies fresh ATP to the cytosol and removes waste products to sustain steady states. Artificial fuel-driven polymers have been developed recently, but keeping them in sustained non-equilibrium steady states (NESS) has proven challenging. Here we show a supramolecular polymer that can be kept in NESS, inside a membrane reactor where ATP is added and waste removed continuously. Assembly and disassembly of our polymer is regulated by phosphorylation and dephosphorylation, respectively. Waste products lead to inhibition, causing the reaction cycle to stop. Inside the membrane reactor, however, waste can be removed leading to long-lived NESS conditions. We anticipate that our approach to obtain NESS can be applied to other stimuli-responsive materials to achieve more life-like behaviour.

Suggested Citation

  • Alessandro Sorrenti & Jorge Leira-Iglesias & Akihiro Sato & Thomas M. Hermans, 2017. "Non-equilibrium steady states in supramolecular polymerization," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15899
    DOI: 10.1038/ncomms15899
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15899
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15899?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone M. Poprawa & Michele Stasi & Brigitte A. K. Kriebisch & Monika Wenisch & Judit Sastre & Job Boekhoven, 2024. "Active droplets through enzyme-free, dynamic phosphorylation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Ryou Kubota & Masahiro Makuta & Ryo Suzuki & Masatoshi Ichikawa & Motomu Tanaka & Itaru Hamachi, 2020. "Force generation by a propagating wave of supramolecular nanofibers," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Jingjing Li & Yihan Cui & Yi-Lin Lu & Yunfei Zhang & Kaihuang Zhang & Chaonan Gu & Kaifang Wang & Yujia Liang & Chun-Sen Liu, 2023. "Programmable supramolecular chirality in non-equilibrium systems affording a multistate chiroptical switch," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Alexander M. Bergmann & Jonathan Bauermann & Giacomo Bartolucci & Carsten Donau & Michele Stasi & Anna-Lena Holtmannspötter & Frank Jülicher & Christoph A. Weber & Job Boekhoven, 2023. "Liquid spherical shells are a non-equilibrium steady state of active droplets," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.