IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15826.html
   My bibliography  Save this article

Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface

Author

Listed:
  • Sang Soo Lee

    (Argonne National Laboratory)

  • Paul Fenter

    (Argonne National Laboratory)

  • Kathryn L. Nagy

    (University of Illinois at Chicago)

  • Neil C. Sturchio

    (University of Delaware)

Abstract

Ion exchange at charged solid–liquid interfaces is central to a broad range of chemical and transport phenomena. Real-time observations of adsorption/desorption at the molecular-scale elucidate exchange reaction pathways. Here we report temporal variation in the distribution of Rb+ species at the muscovite (001)–water interface during exchange with Na+. Time-resolved resonant anomalous X-ray reflectivity measurements at 25 °C reveal that Rb+ desorption occurs over several tens of seconds during which thermodynamically stable inner-sphere Rb+ slowly transforms to a less stable outer-sphere Rb+. In contrast, Rb+ adsorption is about twice as fast, proceeding from Rb+ in the bulk solution to the stable inner-sphere species. The Arrhenius plot of the adsorption/desorption rate constants measured from 9 to 55 °C shows that the pre-exponential factor for desorption is significantly smaller than that for adsorption, indicating that this reduced attempt frequency of cation detachment largely explains the slow cation exchange processes at the interface.

Suggested Citation

  • Sang Soo Lee & Paul Fenter & Kathryn L. Nagy & Neil C. Sturchio, 2017. "Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15826
    DOI: 10.1038/ncomms15826
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15826
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15826?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giada Franceschi & Pavel Kocán & Andrea Conti & Sebastian Brandstetter & Jan Balajka & Igor Sokolović & Markus Valtiner & Florian Mittendorfer & Michael Schmid & Martin Setvín & Ulrike Diebold, 2023. "Resolving the intrinsic short-range ordering of K+ ions on cleaved muscovite mica," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.