IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15766.html
   My bibliography  Save this article

New Martian valley network volume estimate consistent with ancient ocean and warm and wet climate

Author

Listed:
  • Wei Luo

    (Northern Illinois University, Davis Hall 120, DeKalb, Illinois 60115, USA)

  • Xuezhi Cang

    (Northern Illinois University, Davis Hall 120, DeKalb, Illinois 60115, USA)

  • Alan D. Howard

    (University of Virginia)

Abstract

The volume of Martian valley network (VN) cavity and the amount of water needed to create the cavity by erosion are of significant importance for understanding the early Martian climate, the style and rate of hydrologic cycling, and the possibility of an ancient ocean. However, previous attempts at estimating these two quantities were based on selected valleys or at local sites using crude estimates of VN length, width and depth. Here we employed an innovative progressive black top hat transformation method to estimate them on a global scale based on the depth of each valley pixel. The conservative estimate of the minimum global VN volume is 1.74 × 1014 m3 and minimum cumulative volume of water required is 6.86 × 1017 m3 (or ∼5 km of global equivalent layer, GEL). Both are much larger than previous estimates and are consistent with an early warm and wet climate with active hydrologic cycling involving an ocean.

Suggested Citation

  • Wei Luo & Xuezhi Cang & Alan D. Howard, 2017. "New Martian valley network volume estimate consistent with ancient ocean and warm and wet climate," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15766
    DOI: 10.1038/ncomms15766
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15766
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.