IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15735.html
   My bibliography  Save this article

Melting temperatures of MgO under high pressure by micro-texture analysis

Author

Listed:
  • T. Kimura

    (Geodynamics Research Center, Ehime University
    Graduate School of Science, Tohoku University)

  • H. Ohfuji

    (Geodynamics Research Center, Ehime University)

  • M. Nishi

    (Geodynamics Research Center, Ehime University
    Earth-Life Science Institute, Tokyo Institute of Technology)

  • T. Irifune

    (Geodynamics Research Center, Ehime University
    Earth-Life Science Institute, Tokyo Institute of Technology)

Abstract

Periclase (MgO) is the second most abundant mineral after bridgmanite in the Earth’s lower mantle, and its melting behaviour under pressure is important to constrain rheological properties and melting behaviours of the lower mantle materials. Significant discrepancies exist between the melting temperatures of MgO determined by laser-heated diamond anvil cell (LHDAC) and those based on dynamic compressions and theoretical predictions. Here we show the melting temperatures in earlier LHDAC experiments are underestimated due to misjudgment of melting, based on micro-texture observations of the quenched samples. The high melting temperatures of MgO suggest that the subducted cold slabs should have higher viscosities than previously thought, suggesting that the inter-connecting textural feature of MgO would not play important roles for the slab stagnation in the lower mantle. The present results also predict that the ultra-deep magmas produced in the lower mantle are peridotitic, which are stabilized near the core–mantle boundary.

Suggested Citation

  • T. Kimura & H. Ohfuji & M. Nishi & T. Irifune, 2017. "Melting temperatures of MgO under high pressure by micro-texture analysis," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15735
    DOI: 10.1038/ncomms15735
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15735
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15735?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasilije V. Dobrosavljevic & Dongzhou Zhang & Wolfgang Sturhahn & Stella Chariton & Vitali B. Prakapenka & Jiyong Zhao & Thomas S. Toellner & Olivia S. Pardo & Jennifer M. Jackson, 2023. "Melting and defect transitions in FeO up to pressures of Earth’s core-mantle boundary," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.