IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15566.html
   My bibliography  Save this article

Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes

Author

Listed:
  • Jaesang Lee

    (University of Michigan)

  • Changyeong Jeong

    (University of Michigan)

  • Thilini Batagoda

    (University of Southern California)

  • Caleb Coburn

    (University of Michigan)

  • Mark E. Thompson

    (University of Southern California)

  • Stephen R. Forrest

    (University of Michigan
    University of Michigan
    University of Michigan)

Abstract

Since their introduction over 15 years ago, the operational lifetime of blue phosphorescent organic light-emitting diodes (PHOLEDs) has remained insufficient for their practical use in displays and lighting. Their short lifetime results from annihilation between high-energy excited states, producing energetically hot states (>6.0 eV) that lead to molecular dissociation. Here we introduce a strategy to avoid dissociative reactions by including a molecular hot excited state manager within the device emission layer. Hot excited states transfer to the manager and rapidly thermalize before damage is induced on the dopant or host. As a consequence, the managed blue PHOLED attains T80=334±5 h (time to 80% of the 1,000 cd m−2 initial luminance) with a chromaticity coordinate of (0.16, 0.31), corresponding to 3.6±0.1 times improvement in a lifetime compared to conventional, unmanaged devices. To our knowledge, this significant improvement results in the longest lifetime for such a blue PHOLED.

Suggested Citation

  • Jaesang Lee & Changyeong Jeong & Thilini Batagoda & Caleb Coburn & Mark E. Thompson & Stephen R. Forrest, 2017. "Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15566
    DOI: 10.1038/ncomms15566
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15566
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sinyeong Jung & Wai-Lung Cheung & Si-jie Li & Min Wang & Wansi Li & Cangyu Wang & Xiaoge Song & Guodan Wei & Qinghua Song & Season Si Chen & Wanqing Cai & Maggie Ng & Wai Kit Tang & Man-Chung Tang, 2023. "Enhancing operational stability of OLEDs based on subatomic modified thermally activated delayed fluorescence compounds," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jaewook Kim & Joonghyuk Kim & Yongjun Kim & Youngmok Son & Youngsik Shin & Hye Jin Bae & Ji Whan Kim & Sungho Nam & Yongsik Jung & Hyeonsu Kim & Sungwoo Kang & Yoonsoo Jung & Kyunghoon Lee & Hyeonho C, 2023. "Critical role of electrons in the short lifetime of blue OLEDs," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Young Hun Jung & Gyeong Seok Lee & Subramanian Muruganantham & Hye Rin Kim & Jun Hyeog Oh & Jung Ho Ham & Sagar B. Yadav & Ji Hyun Lee & Mi Young Chae & Yun-Hi Kim & Jang Hyuk Kwon, 2024. "Modified t-butyl in tetradentate platinum (II) complexes enables exceptional lifetime for blue-phosphorescent organic light-emitting diodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.