Author
Listed:
- Filippo Cardano
(Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo)
- Alessio D’Errico
(Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo)
- Alexandre Dauphin
(ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology)
- Maria Maffei
(Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo
ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology)
- Bruno Piccirillo
(Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo)
- Corrado de Lisio
(Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo
CNR-SPIN, Complesso Universitario di Monte Sant’Angelo)
- Giulio De Filippis
(Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo
CNR-SPIN, Complesso Universitario di Monte Sant’Angelo)
- Vittorio Cataudella
(Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo
CNR-SPIN, Complesso Universitario di Monte Sant’Angelo)
- Enrico Santamato
(Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo
CNR-SPIN, Complesso Universitario di Monte Sant’Angelo)
- Lorenzo Marrucci
(Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo
CNR-ISASI, Institute of Applied Science and Intelligent Systems)
- Maciej Lewenstein
(ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology
ICREA—Institució Catalana de Recerca i Estudis Avançats)
- Pietro Massignan
(ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology)
Abstract
Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, an observable that rapidly approaches a value proportional to the Zak phase during the free evolution of the system. Then we measure the Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general and readily applicable to all present one-dimensional platforms simulating static or Floquet chiral systems.
Suggested Citation
Filippo Cardano & Alessio D’Errico & Alexandre Dauphin & Maria Maffei & Bruno Piccirillo & Corrado de Lisio & Giulio De Filippis & Vittorio Cataudella & Enrico Santamato & Lorenzo Marrucci & Maciej Le, 2017.
"Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons,"
Nature Communications, Nature, vol. 8(1), pages 1-7, August.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15516
DOI: 10.1038/ncomms15516
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Tao Chen & Chenxi Huang & Ivan Velkovsky & Kaden R. A. Hazzard & Jacob P. Covey & Bryce Gadway, 2024.
"Strongly interacting Rydberg atoms in synthetic dimensions with a magnetic flux,"
Nature Communications, Nature, vol. 15(1), pages 1-8, December.
- Shulin Wang & Chengzhi Qin & Weiwei Liu & Bing Wang & Feng Zhou & Han Ye & Lange Zhao & Jianji Dong & Xinliang Zhang & Stefano Longhi & Peixiang Lu, 2022.
"High-order dynamic localization and tunable temporal cloaking in ac-electric-field driven synthetic lattices,"
Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Mu Yang & Hao-Qing Zhang & Yu-Wei Liao & Zheng-Hao Liu & Zheng-Wei Zhou & Xing-Xiang Zhou & Jin-Shi Xu & Yong-Jian Han & Chuan-Feng Li & Guang-Can Guo, 2022.
"Topological band structure via twisted photons in a degenerate cavity,"
Nature Communications, Nature, vol. 13(1), pages 1-7, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15516. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.