IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15455.html
   My bibliography  Save this article

The origin and degassing history of the Earth's atmosphere revealed by Archean xenon

Author

Listed:
  • Guillaume Avice

    (CRPG-CNRS, Université de Lorraine
    Present address: Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA)

  • Bernard Marty

    (CRPG-CNRS, Université de Lorraine)

  • Ray Burgess

    (School of Earth and Environmental Sciences, University of Manchester)

Abstract

Xenon (Xe) is an exceptional tracer for investigating the origin and fate of volatile elements on Earth. The initial isotopic composition of atmospheric Xe remains unknown, as do the mechanisms involved in its depletion and isotopic fractionation compared with other reservoirs in the solar system. Here we present high precision analyses of noble gases trapped in fluid inclusions of Archean quartz (Barberton, South Africa) that reveal the isotopic composition of the paleo-atmosphere at ≈3.3 Ga. The Archean atmospheric Xe is mass-dependently fractionated by 12.9±2.4 ‰ u−1 (± 2σ, s.d.) relative to the modern atmosphere. The lower than today 129Xe excess requires a degassing rate of radiogenic Xe from the mantle higher than at present. The primordial Xe component delivered to the Earth's atmosphere is distinct from Solar or Chondritic Xe but similar to a theoretical component called U-Xe. Comets may have brought this component to the Earth's atmosphere during the last stages of terrestrial accretion.

Suggested Citation

  • Guillaume Avice & Bernard Marty & Ray Burgess, 2017. "The origin and degassing history of the Earth's atmosphere revealed by Archean xenon," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15455
    DOI: 10.1038/ncomms15455
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15455
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15455?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.