IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15419.html
   My bibliography  Save this article

Electricity from methane by reversing methanogenesis

Author

Listed:
  • Michael J. McAnulty

    (The Pennsylvania State University)

  • Venkata G. Poosarla

    (The Pennsylvania State University)

  • Kyoung-Yeol Kim

    (The Pennsylvania State University)

  • Ricardo Jasso-Chávez

    (National Institute of Cardiology)

  • Bruce E. Logan

    (The Pennsylvania State University)

  • Thomas K. Wood

    (The Pennsylvania State University
    The Pennsylvania State University)

Abstract

Given our vast methane reserves and the difficulty in transporting methane without substantial leaks, the conversion of methane directly into electricity would be beneficial. Microbial fuel cells harness electrical power from a wide variety of substrates through biological means; however, the greenhouse gas methane has not been used with much success previously as a substrate in microbial fuel cells to generate electrical current. Here we construct a synthetic consortium consisting of: (i) an engineered archaeal strain to produce methyl-coenzyme M reductase from unculturable anaerobic methanotrophs for capturing methane and secreting acetate; (ii) micro-organisms from methane-acclimated sludge (including Paracoccus denitrificans) to facilitate electron transfer by providing electron shuttles (confirmed by replacing the sludge with humic acids), and (iii) Geobacter sulfurreducens to produce electrons from acetate, to create a microbial fuel cell that converts methane directly into significant electrical current. Notably, this methane microbial fuel cell operates at high Coulombic efficiency.

Suggested Citation

  • Michael J. McAnulty & Venkata G. Poosarla & Kyoung-Yeol Kim & Ricardo Jasso-Chávez & Bruce E. Logan & Thomas K. Wood, 2017. "Electricity from methane by reversing methanogenesis," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15419
    DOI: 10.1038/ncomms15419
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15419
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15419?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueqin Zhang & Georgina H. Joyce & Andy O. Leu & Jing Zhao & Hesamoddin Rabiee & Bernardino Virdis & Gene W. Tyson & Zhiguo Yuan & Simon J. McIlroy & Shihu Hu, 2023. "Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    3. Jafar Ali & Aaqib Sohail & Lei Wang & Muhammad Rizwan Haider & Shahi Mulk & Gang Pan, 2018. "Electro-Microbiology as a Promising Approach Towards Renewable Energy and Environmental Sustainability," Energies, MDPI, vol. 11(7), pages 1-30, July.
    4. Heleen T. Ouboter & Rob Mesman & Tom Sleutels & Jelle Postma & Martijn Wissink & Mike S. M. Jetten & Annemiek Ter Heijne & Tom Berben & Cornelia U. Welte, 2024. "Mechanisms of extracellular electron transfer in anaerobic methanotrophic archaea," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Wood, Thomas K. & Gurgan, Ilke & Howley, Ethan T. & Riedel-Kruse, Ingmar H., 2023. "Converting methane into electricity and higher-value chemicals at scale via anaerobic microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Yue Zheng & Huan Wang & Yan Liu & Peiyu Liu & Baoli Zhu & Yanning Zheng & Jinhua Li & Ludmila Chistoserdova & Zhiyong Jason Ren & Feng Zhao, 2024. "Electrochemically coupled CH4 and CO2 consumption driven by microbial processes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.