IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15250.html
   My bibliography  Save this article

Morphometric convergence between Proterozoic and post-vegetation rivers

Author

Listed:
  • Alessandro Ielpi

    (Harquail School of Earth Sciences, Laurentian University)

  • Robert H. Rainbird

    (Geological Survey of Canada)

  • Dario Ventra

    (University of Geneva
    Faculty of Geosciences, Utrecht University)

  • Massimiliano Ghinassi

    (University of Padua)

Abstract

Proterozoic rivers flowed through barren landscapes, and lacked interactions with macroscopic organisms. It is widely held that, in the absence of vegetation, fluvial systems featured barely entrenched channels that promptly widened over floodplains during floods. This hypothesis has never been tested because of an enduring lack of Precambrian fluvial-channel morphometric data. Here we show, through remote sensing and outcrop sedimentology, that deep rivers were developed in the Proterozoic, and that morphometric parameters for large fluvial channels might have remained within a narrow range over almost 2 billion years. Our data set comprises fluvial-channel forms deposited a few tens to thousands of kilometres from their headwaters, likely the record of basin- to craton-scale systems. Large Proterozoic channel forms present width:thickness ranges matching those of Phanerozoic counterparts, suggesting closer parallels between their fluvial dynamics. This outcome may better inform analyses of extraterrestrial planetary surfaces and related comparisons with pre-vegetation Earth landscapes.

Suggested Citation

  • Alessandro Ielpi & Robert H. Rainbird & Dario Ventra & Massimiliano Ghinassi, 2017. "Morphometric convergence between Proterozoic and post-vegetation rivers," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15250
    DOI: 10.1038/ncomms15250
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15250
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvise Finotello & Alessandro Ielpi & Mathieu G. A. Lapôtre & Eli D. Lazarus & Massimiliano Ghinassi & Luca Carniello & Serena Favaro & Davide Tognin & Andrea D’Alpaos, 2024. "Vegetation enhances curvature-driven dynamics in meandering rivers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.