IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15166.html
   My bibliography  Save this article

A sequential EMT-MET mechanism drives the differentiation of human embryonic stem cells towards hepatocytes

Author

Listed:
  • Qiuhong Li

    (CAS Key laboratory of Regenerative Biology, Guangdong Key laboratory of Stem Cell and Regenerative Medicine and CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health-Guangzhou Medical University Joint School of Biological Sciences, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
    Central Laboratory, School and Hospital of Stomatology, Peking University
    Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University)

  • Andrew P. Hutchins

    (CAS Key laboratory of Regenerative Biology, Guangdong Key laboratory of Stem Cell and Regenerative Medicine and CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health-Guangzhou Medical University Joint School of Biological Sciences, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)

  • Yong Chen

    (CAS Key laboratory of Regenerative Biology, Guangdong Key laboratory of Stem Cell and Regenerative Medicine and CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health-Guangzhou Medical University Joint School of Biological Sciences, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)

  • Shengbiao Li

    (CAS Key laboratory of Regenerative Biology, Guangdong Key laboratory of Stem Cell and Regenerative Medicine and CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health-Guangzhou Medical University Joint School of Biological Sciences, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)

  • Yongli Shan

    (CAS Key laboratory of Regenerative Biology, Guangdong Key laboratory of Stem Cell and Regenerative Medicine and CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health-Guangzhou Medical University Joint School of Biological Sciences, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)

  • Baojian Liao

    (CAS Key laboratory of Regenerative Biology, Guangdong Key laboratory of Stem Cell and Regenerative Medicine and CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health-Guangzhou Medical University Joint School of Biological Sciences, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)

  • Dejin Zheng

    (CAS Key laboratory of Regenerative Biology, Guangdong Key laboratory of Stem Cell and Regenerative Medicine and CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health-Guangzhou Medical University Joint School of Biological Sciences, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)

  • Xi Shi

    (CAS Key laboratory of Regenerative Biology, Guangdong Key laboratory of Stem Cell and Regenerative Medicine and CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health-Guangzhou Medical University Joint School of Biological Sciences, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)

  • Yinxiong Li

    (CAS Key laboratory of Regenerative Biology, Guangdong Key laboratory of Stem Cell and Regenerative Medicine and CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health-Guangzhou Medical University Joint School of Biological Sciences, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)

  • Wai-Yee Chan

    (CAS Key laboratory of Regenerative Biology, Guangdong Key laboratory of Stem Cell and Regenerative Medicine and CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health-Guangzhou Medical University Joint School of Biological Sciences, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
    CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong)

  • Guangjin Pan

    (CAS Key laboratory of Regenerative Biology, Guangdong Key laboratory of Stem Cell and Regenerative Medicine and CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health-Guangzhou Medical University Joint School of Biological Sciences, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)

  • Shicheng Wei

    (Central Laboratory, School and Hospital of Stomatology, Peking University
    Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University)

  • Xiaodong Shu

    (CAS Key laboratory of Regenerative Biology, Guangdong Key laboratory of Stem Cell and Regenerative Medicine and CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health-Guangzhou Medical University Joint School of Biological Sciences, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)

  • Duanqing Pei

    (CAS Key laboratory of Regenerative Biology, Guangdong Key laboratory of Stem Cell and Regenerative Medicine and CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health-Guangzhou Medical University Joint School of Biological Sciences, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences)

Abstract

Reprogramming has been shown to involve EMT–MET; however, its role in cell differentiation is unclear. We report here that in vitro differentiation of hESCs to hepatic lineage undergoes a sequential EMT–MET with an obligatory intermediate mesenchymal phase. Gene expression analysis reveals that Activin A-induced formation of definitive endoderm (DE) accompanies a synchronous EMT mediated by autocrine TGFβ signalling followed by a MET process. Pharmacological inhibition of TGFβ signalling blocks the EMT as well as DE formation. We then identify SNAI1 as the key EMT transcriptional factor required for the specification of DE. Genetic ablation of SNAI1 in hESCs does not affect the maintenance of pluripotency or neural differentiation, but completely disrupts the formation of DE. These results reveal a critical mesenchymal phase during the acquisition of DE, highlighting a role for sequential EMT–METs in both differentiation and reprogramming.

Suggested Citation

  • Qiuhong Li & Andrew P. Hutchins & Yong Chen & Shengbiao Li & Yongli Shan & Baojian Liao & Dejin Zheng & Xi Shi & Yinxiong Li & Wai-Yee Chan & Guangjin Pan & Shicheng Wei & Xiaodong Shu & Duanqing Pei, 2017. "A sequential EMT-MET mechanism drives the differentiation of human embryonic stem cells towards hepatocytes," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15166
    DOI: 10.1038/ncomms15166
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15166
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Wang & Chen Li & Jin Ming & Linlin Wu & Shicai Fang & Yi Huang & Lihui Lin & He Liu & Junqi Kuang & Chengchen Zhao & Xingnan Huang & Huijian Feng & Jing Guo & Xuejie Yang & Liman Guo & Xiaofei Zhan, 2023. "The NuRD complex cooperates with SALL4 to orchestrate reprogramming," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.