IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15145.html
   My bibliography  Save this article

Energy scaling of targeted optimal control of complex networks

Author

Listed:
  • Isaac Klickstein

    (The University of New Mexico)

  • Afroza Shirin

    (The University of New Mexico)

  • Francesco Sorrentino

    (The University of New Mexico)

Abstract

Recently it has been shown that the control energy required to control a dynamical complex network is prohibitively large when there are only a few control inputs. Most methods to reduce the control energy have focused on where, in the network, to place additional control inputs. Here, in contrast, we show that by controlling the states of a subset of the nodes of a network, rather than the state of every node, while holding the number of control signals constant, the required energy to control a portion of the network can be reduced substantially. The energy requirements exponentially decay with the number of target nodes, suggesting that large networks can be controlled by a relatively small number of inputs as long as the target set is appropriately sized. We validate our conclusions in model and real networks to arrive at an energy scaling law to better design control objectives regardless of system size, energy restrictions, state restrictions, input node choices and target node choices.

Suggested Citation

  • Isaac Klickstein & Afroza Shirin & Francesco Sorrentino, 2017. "Energy scaling of targeted optimal control of complex networks," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15145
    DOI: 10.1038/ncomms15145
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15145
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aming Li & Yang-Yu Liu, 2020. "Controlling Network Dynamics," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-19, February.
    2. Meng, Tao & Duan, Gaopeng & Li, Aming & Wang, Long, 2023. "Control energy scaling for target control of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Wang, Sixin & Mei, Jun & Xia, Dan & Yang, Zhanying & Hu, Junhao, 2022. "Finite-time optimal feedback control mechanism for knowledge transmission in complex networks via model predictive control," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Gaopeng Duan & Aming Li & Tao Meng & Long Wang, 2020. "Energy Cost For Target Control Of Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-27, March.
    5. Li, Xiang & Li, Guoqi & Gao, Leitao & Li, Beibei & Xiao, Gaoxi, 2024. "Sufficient control of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.