IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15140.html
   My bibliography  Save this article

Subsampling scaling

Author

Listed:
  • A. Levina

    (Institute of Science and Technology Austria
    Bernstein Center for Computational Neuroscience)

  • V. Priesemann

    (Bernstein Center for Computational Neuroscience
    Max Planck Institute for Dynamics and Self-Organization)

Abstract

In real-world applications, observations are often constrained to a small fraction of a system. Such spatial subsampling can be caused by the inaccessibility or the sheer size of the system, and cannot be overcome by longer sampling. Spatial subsampling can strongly bias inferences about a system’s aggregated properties. To overcome the bias, we derive analytically a subsampling scaling framework that is applicable to different observables, including distributions of neuronal avalanches, of number of people infected during an epidemic outbreak, and of node degrees. We demonstrate how to infer the correct distributions of the underlying full system, how to apply it to distinguish critical from subcritical systems, and how to disentangle subsampling and finite size effects. Lastly, we apply subsampling scaling to neuronal avalanche models and to recordings from developing neural networks. We show that only mature, but not young networks follow power-law scaling, indicating self-organization to criticality during development.

Suggested Citation

  • A. Levina & V. Priesemann, 2017. "Subsampling scaling," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15140
    DOI: 10.1038/ncomms15140
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15140
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Contreras, Sebastian & Oróstica, Karen Y. & Daza-Sanchez, Anamaria & Wagner, Joel & Dönges, Philipp & Medina-Ortiz, David & Jara, Matias & Verdugo, Ricardo & Conca, Carlos & Priesemann, Viola & Oliver, 2023. "Model-based assessment of sampling protocols for infectious disease genomic surveillance," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.