IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15135.html
   My bibliography  Save this article

Fabrication of MoSe2 nanoribbons via an unusual morphological phase transition

Author

Listed:
  • Yuxuan Chen

    (University of Texas at Austin)

  • Ping Cui

    (International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China)

  • Xibiao Ren

    (State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University)

  • Chendong Zhang

    (University of Texas at Austin
    International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China)

  • Chuanhong Jin

    (State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University)

  • Zhenyu Zhang

    (International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China)

  • Chih-Kang Shih

    (University of Texas at Austin)

Abstract

Transition metal dichalcogenides (TMDs) are a family of van der Waals layered materials exhibiting unique electronic, optical, magnetic and transport properties. Their technological potentials hinge critically on the ability to achieve controlled fabrication of desirable nanostructures, such as nanoribbons and nanodots. To date, nanodots/nanoislands have been regularly observed, while controlled fabrication of TMD nanoribbons remains challenging. Here we report a bottom-up fabrication of MoSe2 nanoribbons using molecular beam epitaxy, via an unexpected temperature-induced morphological phase transition from the nanodot to nanoribbon regime. Such nanoribbons are of zigzag nature, characterized by distinct chemical and electronic properties along the edges. The phase space for nanoribbon growth is narrowly defined by proper Se:Mo ratios, as corroborated experimentally using different Se fluxes, and supported theoretically using first-principles calculations that establish the crucial role of the morphological reconstruction of the bare Mo-terminated edge. The growth mechanism revealed should be applicable to other TMD systems.

Suggested Citation

  • Yuxuan Chen & Ping Cui & Xibiao Ren & Chendong Zhang & Chuanhong Jin & Zhenyu Zhang & Chih-Kang Shih, 2017. "Fabrication of MoSe2 nanoribbons via an unusual morphological phase transition," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15135
    DOI: 10.1038/ncomms15135
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15135
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengfei Yang & Dashuai Wang & Xiaoxu Zhao & Wenzhi Quan & Qi Jiang & Xuan Li & Bin Tang & Jingyi Hu & Lijie Zhu & Shuangyuan Pan & Yuping Shi & Yahuan Huan & Fangfang Cui & Shan Qiao & Qing Chen & Zhe, 2022. "Epitaxial growth of inch-scale single-crystal transition metal dichalcogenides through the patching of unidirectionally orientated ribbons," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.