IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14896.html
   My bibliography  Save this article

Human seizures couple across spatial scales through travelling wave dynamics

Author

Listed:
  • L-E Martinet

    (Massachusetts General Hospital)

  • G. Fiddyment

    (Graduate Program in Neuroscience, Boston University)

  • J. R. Madsen

    (Boston Children's Hospital, Harvard Medical School)

  • E. N. Eskandar

    (Massachusetts General Hospital)

  • W. Truccolo

    (Brown University
    Center for Neurorestoration and Neurotechnology, Providence)

  • U. T. Eden

    (Boston University)

  • S. S. Cash

    (Massachusetts General Hospital)

  • M. A. Kramer

    (Boston University)

Abstract

Epilepsy—the propensity toward recurrent, unprovoked seizures—is a devastating disease affecting 65 million people worldwide. Understanding and treating this disease remains a challenge, as seizures manifest through mechanisms and features that span spatial and temporal scales. Here we address this challenge through the analysis and modelling of human brain voltage activity recorded simultaneously across microscopic and macroscopic spatial scales. We show that during seizure large-scale neural populations spanning centimetres of cortex coordinate with small neural groups spanning cortical columns, and provide evidence that rapidly propagating waves of activity underlie this increased inter-scale coupling. We develop a corresponding computational model to propose specific mechanisms—namely, the effects of an increased extracellular potassium concentration diffusing in space—that support the observed spatiotemporal dynamics. Understanding the multi-scale, spatiotemporal dynamics of human seizures—and connecting these dynamics to specific biological mechanisms—promises new insights to treat this devastating disease.

Suggested Citation

  • L-E Martinet & G. Fiddyment & J. R. Madsen & E. N. Eskandar & W. Truccolo & U. T. Eden & S. S. Cash & M. A. Kramer, 2017. "Human seizures couple across spatial scales through travelling wave dynamics," Nature Communications, Nature, vol. 8(1), pages 1-13, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14896
    DOI: 10.1038/ncomms14896
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14896
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anton V Chizhov & Aleksei E Sanin, 2020. "A simple model of epileptic seizure propagation: Potassium diffusion versus axo-dendritic spread," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-21, April.
    2. Michael E Rule & David Schnoerr & Matthias H Hennig & Guido Sanguinetti, 2019. "Neural field models for latent state inference: Application to large-scale neuronal recordings," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-23, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.