Author
Listed:
- Kai-Qiang Lin
(Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University)
- Jun Yi
(Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University)
- Jin-Hui Zhong
(Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University)
- Shu Hu
(Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University)
- Bi-Ju Liu
(Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University)
- Jun-Yang Liu
(Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University)
- Cheng Zong
(Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University)
- Zhi-Chao Lei
(Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University)
- Xiang Wang
(Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University)
- Javier Aizpurua
(Donostia International Physics Center (DIPC) and Material Physics Center (CSIC-UPV/EHU))
- Rubén Esteban
(Donostia International Physics Center (DIPC) and Material Physics Center (CSIC-UPV/EHU)
IKERBASQUE, Basque Foundation for Science)
- Bin Ren
(Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University)
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy has attracted tremendous interests as a highly sensitive label-free tool. The local field produced by the excitation of localized surface plasmon resonances (LSPRs) dominates the overall enhancement of SERS. Such an electromagnetic enhancement is unfortunately accompanied by a strong modification in the relative intensity of the original Raman spectra, which highly distorts spectral features providing chemical information. Here we propose a robust method to retrieve the fingerprint of intrinsic chemical information from the SERS spectra. The method is established based on the finding that the SERS background originates from the LSPR-modulated photoluminescence, which contains the local field information shared also by SERS. We validate this concept of retrieval of intrinsic fingerprint information in well controlled single metallic nanoantennas of varying aspect ratios. We further demonstrate its unambiguity and generality in more complicated systems of tip-enhanced Raman spectroscopy (TERS) and SERS of silver nanoaggregates.
Suggested Citation
Kai-Qiang Lin & Jun Yi & Jin-Hui Zhong & Shu Hu & Bi-Ju Liu & Jun-Yang Liu & Cheng Zong & Zhi-Chao Lei & Xiang Wang & Javier Aizpurua & Rubén Esteban & Bin Ren, 2017.
"Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering,"
Nature Communications, Nature, vol. 8(1), pages 1-9, April.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14891
DOI: 10.1038/ncomms14891
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14891. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.