IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14851.html
   My bibliography  Save this article

Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units

Author

Listed:
  • Yong Wu

    (State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University)

  • De-Cai Xiong

    (State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University)

  • Si-Cong Chen

    (State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University)

  • Yong-Shi Wang

    (State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University)

  • Xin-Shan Ye

    (State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University)

Abstract

Carbohydrates are diverse bio-macromolecules with highly complex structures that are involved in numerous biological processes. Well-defined carbohydrates obtained by chemical synthesis are essential to the understanding of their functions. However, synthesis of carbohydrates is greatly hampered by its insufficient efficiency. So far, assembly of long carbohydrate chains remains one of the most challenging tasks for synthetic chemists. Here we describe a highly efficient assembly of a 92-mer polysaccharide by the preactivation-based one-pot glycosylation protocol. Several linear and branched oligosaccharide/polysaccharide fragments ranging from 5-mer to 31-mer in length have been rapidly constructed in one-pot manner, which enables the first total synthesis of a biologically important mycobacterial arabinogalactan through a highly convergent [31+31+30] coupling reaction. Our results show that the preactivation-based one-pot glycosylation protocol may provide access to the construction of long and complicated carbohydrate chains.

Suggested Citation

  • Yong Wu & De-Cai Xiong & Si-Cong Chen & Yong-Shi Wang & Xin-Shan Ye, 2017. "Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14851
    DOI: 10.1038/ncomms14851
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14851
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Zhang & Zhao-Xiang Luo & Xia Wu & Chen-Fei Gao & Peng-Yu Wang & Jin-Ze Chai & Miao Liu & Xin-Shan Ye & De-Cai Xiong, 2023. "Photosensitizer-free visible-light-promoted glycosylation enabled by 2-glycosyloxy tropone donors," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.