IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14835.html
   My bibliography  Save this article

Glutaredoxin catalysis requires two distinct glutathione interaction sites

Author

Listed:
  • Patricia Begas

    (Ruprecht-Karls University)

  • Linda Liedgens

    (Ruprecht-Karls University)

  • Anna Moseler

    (Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn)

  • Andreas J. Meyer

    (Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn)

  • Marcel Deponte

    (Ruprecht-Karls University)

Abstract

Glutaredoxins are key players in cellular redox homoeostasis and exert a variety of essential functions ranging from glutathione-dependent catalysis to iron metabolism. The exact structure–function relationships and mechanistic differences among glutaredoxins that are active or inactive in standard enzyme assays have so far remained elusive despite numerous kinetic and structural studies. Here, we elucidate the enzymatic mechanism showing that glutaredoxins require two distinct glutathione interaction sites for efficient redox catalysis. The first site interacts with the glutathione moiety of glutathionylated disulfide substrates. The second site activates glutathione as the reducing agent. We propose that the requirement of two distinct glutathione interaction sites for the efficient reduction of glutathionylated disulfide substrates explains the deviating structure–function relationships, activities and substrate preferences of different glutaredoxin subfamilies as well as thioredoxins. Our model also provides crucial insights for the design or optimization of artificial glutaredoxins, transition-state inhibitors and glutaredoxin-coupled redox sensors.

Suggested Citation

  • Patricia Begas & Linda Liedgens & Anna Moseler & Andreas J. Meyer & Marcel Deponte, 2017. "Glutaredoxin catalysis requires two distinct glutathione interaction sites," Nature Communications, Nature, vol. 8(1), pages 1-13, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14835
    DOI: 10.1038/ncomms14835
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14835
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14835?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elizabeth M. Corteselli & Mona Sharafi & Robert Hondal & Maximilian MacPherson & Sheryl White & Ying-Wai Lam & Clarissa Gold & Allison M. Manuel & Albert Vliet & Severin T. Schneebeli & Vikas Anathy &, 2023. "Structural and functional fine mapping of cysteines in mammalian glutaredoxin reveal their differential oxidation susceptibility," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Fabian Geissel & Lukas Lang & Britta Husemann & Bruce Morgan & Marcel Deponte, 2024. "Deciphering the mechanism of glutaredoxin-catalyzed roGFP2 redox sensing reveals a ternary complex with glutathione for protein disulfide reduction," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.