IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14825.html
   My bibliography  Save this article

Sensitive detection of rare disease-associated cell subsets via representation learning

Author

Listed:
  • Eirini Arvaniti

    (Institute for Molecular Systems Biology
    Swiss Institute of Bioinformatics
    Life Science Graduate School Zurich, PhD Program Systems Biology)

  • Manfred Claassen

    (Institute for Molecular Systems Biology
    Swiss Institute of Bioinformatics)

Abstract

Rare cell populations play a pivotal role in the initiation and progression of diseases such as cancer. However, the identification of such subpopulations remains a difficult task. This work describes CellCnn, a representation learning approach to detect rare cell subsets associated with disease using high-dimensional single-cell measurements. Using CellCnn, we identify paracrine signalling-, AIDS onset- and rare CMV infection-associated cell subsets in peripheral blood, and extremely rare leukaemic blast populations in minimal residual disease-like situations with frequencies as low as 0.01%.

Suggested Citation

  • Eirini Arvaniti & Manfred Claassen, 2017. "Sensitive detection of rare disease-associated cell subsets via representation learning," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14825
    DOI: 10.1038/ncomms14825
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14825
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14825?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ross J Burton & Raya Ahmed & Simone M Cuff & Sarah Baker & Andreas Artemiou & Matthias Eberl, 2021. "CytoPy: An autonomous cytometry analysis framework," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-21, June.
    2. Gunther Glehr & Paloma Riquelme & Katharina Kronenberg & Robert Lohmayer & Víctor J. López-Madrona & Michael Kapinsky & Hans J. Schlitt & Edward K. Geissler & Rainer Spang & Sebastian Haferkamp & Jame, 2024. "Restricting datasets to classifiable samples augments discovery of immune disease biomarkers," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    3. Xiaoying Wang & Maoteng Duan & Jingxian Li & Anjun Ma & Gang Xin & Dong Xu & Zihai Li & Bingqiang Liu & Qin Ma, 2024. "MarsGT: Multi-omics analysis for rare population inference using single-cell graph transformer," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.