IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14775.html
   My bibliography  Save this article

Experimental violation of local causality in a quantum network

Author

Listed:
  • Gonzalo Carvacho

    (Dipartimento di Fisica - Sapienza Università di Roma)

  • Francesco Andreoli

    (Dipartimento di Fisica - Sapienza Università di Roma)

  • Luca Santodonato

    (Dipartimento di Fisica - Sapienza Università di Roma)

  • Marco Bentivegna

    (Dipartimento di Fisica - Sapienza Università di Roma)

  • Rafael Chaves

    (International Institute of Physics, Federal University of Rio Grande do Norte
    Institute for Theoretical Physics, University of Cologne)

  • Fabio Sciarrino

    (Dipartimento di Fisica - Sapienza Università di Roma)

Abstract

Bell’s theorem plays a crucial role in quantum information processing and thus several experimental investigations of Bell inequalities violations have been carried out over the years. Despite their fundamental relevance, however, previous experiments did not consider an ingredient of relevance for quantum networks: the fact that correlations between distant parties are mediated by several, typically independent sources. Here, using a photonic setup, we investigate a quantum network consisting of three spatially separated nodes whose correlations are mediated by two distinct sources. This scenario allows for the emergence of the so-called non-bilocal correlations, incompatible with any local model involving two independent hidden variables. We experimentally witness the emergence of this kind of quantum correlations by violating a Bell-like inequality under the fair-sampling assumption. Our results provide a proof-of-principle experiment of generalizations of Bell’s theorem for networks, which could represent a potential resource for quantum communication protocols.

Suggested Citation

  • Gonzalo Carvacho & Francesco Andreoli & Luca Santodonato & Marco Bentivegna & Rafael Chaves & Fabio Sciarrino, 2017. "Experimental violation of local causality in a quantum network," Nature Communications, Nature, vol. 8(1), pages 1-6, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14775
    DOI: 10.1038/ncomms14775
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14775
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14775?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ning-Ning Wang & Alejandro Pozas-Kerstjens & Chao Zhang & Bi-Heng Liu & Yun-Feng Huang & Chuan-Feng Li & Guang-Can Guo & Nicolas Gisin & Armin Tavakoli, 2023. "Certification of non-classicality in all links of a photonic star network without assuming quantum mechanics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yang, Yan-Han & Yang, Xue & Luo, Ming-Xing, 2023. "Device-independently verifying full network nonlocality of quantum networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.