IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14723.html
   My bibliography  Save this article

A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production

Author

Listed:
  • Kyuju Kwak

    (Yonsei University)

  • Woojun Choi

    (Yonsei University)

  • Qing Tang

    (University of California)

  • Minseok Kim

    (Yonsei University)

  • Yongjin Lee

    (Yonsei University)

  • De-en Jiang

    (University of California)

  • Dongil Lee

    (Yonsei University)

Abstract

The theoretically predicted volcano plot for hydrogen production shows the best catalyst as the one that ensures that the hydrogen binding step is thermodynamically neutral. However, the experimental realization of this concept has suffered from the inherent surface heterogeneity of solid catalysts. It is even more challenging for molecular catalysts because of their complex chemical environment. Here, we report that the thermoneutral catalyst can be prepared by simple doping of a platinum atom into a molecule-like gold nanocluster. The catalytic activity of the resulting bimetallic nanocluster, PtAu24(SC6H13)18, for the hydrogen production is found to be significantly higher than reported catalysts. It is even better than the benchmarking platinum catalyst. The molecule-like bimetallic nanocluster represents a class of catalysts that bridge homogeneous and heterogeneous catalysis and may provide a platform for the discovery of finely optimized catalysts.

Suggested Citation

  • Kyuju Kwak & Woojun Choi & Qing Tang & Minseok Kim & Yongjin Lee & De-en Jiang & Dongil Lee, 2017. "A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14723
    DOI: 10.1038/ncomms14723
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14723
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14723?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhihe Liu & Hua Tan & Bo Li & Zehua Hu & De-en Jiang & Qiaofeng Yao & Lei Wang & Jianping Xie, 2023. "Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Haohua Deng & Kaiyuan Huang & Lingfang Xiu & Weiming Sun & Qiaofeng Yao & Xiangyu Fang & Xin Huang & Hamada A. A. Noreldeen & Huaping Peng & Jianping Xie & Wei Chen, 2022. "Bis-Schiff base linkage-triggered highly bright luminescence of gold nanoclusters in aqueous solution at the single-cluster level," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.