IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14407.html
   My bibliography  Save this article

Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions

Author

Listed:
  • L. Lu

    (Brown University)

  • M. Song

    (Brown University)

  • W. Liu

    (Brown University)

  • A. P. Reyes

    (National High Magnetic Field Laboratory)

  • P. Kuhns

    (National High Magnetic Field Laboratory)

  • H. O. Lee

    (Stanford University
    Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory)

  • I. R. Fisher

    (Stanford University
    Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory)

  • V. F. Mitrović

    (Brown University)

Abstract

Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba2NaOsO6. Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probe spin and orbital/lattice degrees of freedom of Ba2NaOsO6 provide such tests. Here we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions.

Suggested Citation

  • L. Lu & M. Song & W. Liu & A. P. Reyes & P. Kuhns & H. O. Lee & I. R. Fisher & V. F. Mitrović, 2017. "Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14407
    DOI: 10.1038/ncomms14407
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14407
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivica Živković & Jian-Rui Soh & Oleg Malanyuk & Ravi Yadav & Federico Pisani & Aria M. Tehrani & Davor Tolj & Jana Pasztorova & Daigorou Hirai & Yuan Wei & Wenliang Zhang & Carlos Galdino & Tianlun Yu, 2024. "Dynamic Jahn-Teller effect in the strong spin-orbit coupling regime," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Lorenzo Celiberti & Dario Fiore Mosca & Giuseppe Allodi & Leonid V. Pourovskii & Anna Tassetti & Paola Caterina Forino & Rong Cong & Erick Garcia & Phuong M. Tran & Roberto De Renzi & Patrick M. Woodw, 2024. "Spin-orbital Jahn-Teller bipolarons," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.