IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14384.html
   My bibliography  Save this article

Harnessing catalytic pumps for directional delivery of microparticles in microchambers

Author

Listed:
  • Sambeeta Das

    (The Pennsylvania State University)

  • Oleg E. Shklyaev

    (University of Pittsburgh)

  • Alicia Altemose

    (The Pennsylvania State University)

  • Henry Shum

    (University of Pittsburgh)

  • Isamar Ortiz-Rivera

    (The Pennsylvania State University)

  • Lyanne Valdez

    (The Pennsylvania State University)

  • Thomas E. Mallouk

    (The Pennsylvania State University)

  • Anna C. Balazs

    (University of Pittsburgh)

  • Ayusman Sen

    (The Pennsylvania State University)

Abstract

The directed transport of microparticles in microfluidic devices is vital for efficient bioassays and fabrication of complex microstructures. There remains, however, a need for methods to propel and steer microscopic cargo that do not require modifying these particles. Using theory and experiments, we show that catalytic surface reactions can be used to deliver microparticle cargo to specified regions in microchambers. Here reagents diffuse from a gel reservoir and react with the catalyst-coated surface. Fluid density gradients due to the spatially varying reagent concentration induce a convective flow, which carries the suspended particles until the reagents are consumed. Consequently, the cargo is deposited around a specific position on the surface. The velocity and final peak location of the cargo can be tuned independently. By increasing the local particle concentration, highly sensitive assays can be performed efficiently and rapidly. Moreover, the process can be repeated by introducing fresh reagent into the microchamber.

Suggested Citation

  • Sambeeta Das & Oleg E. Shklyaev & Alicia Altemose & Henry Shum & Isamar Ortiz-Rivera & Lyanne Valdez & Thomas E. Mallouk & Anna C. Balazs & Ayusman Sen, 2017. "Harnessing catalytic pumps for directional delivery of microparticles in microchambers," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14384
    DOI: 10.1038/ncomms14384
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14384
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María J. Esplandiu & David Reguera & Daniel Romero-Guzmán & Amparo M. Gallardo-Moreno & Jordi Fraxedas, 2022. "From radial to unidirectional water pumping in zeta-potential modulated Nafion nanostructures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Cornel Dillinger & Nitesh Nama & Daniel Ahmed, 2021. "Ultrasound-activated ciliary bands for microrobotic systems inspired by starfish," Nature Communications, Nature, vol. 12(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.