IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14380.html
   My bibliography  Save this article

Plasmon-assisted high-harmonic generation in graphene

Author

Listed:
  • Joel D. Cox

    (ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology)

  • Andrea Marini

    (ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology)

  • F. Javier García de Abajo

    (ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology
    ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig LLuís Companys 23)

Abstract

High-harmonic generation in condensed-matter systems is both a source of fundamental insight into quantum electron motion and a promising candidate to realize compact ultraviolet and ultrafast light sources. While graphene is anticipated to efficiently generate high-order harmonics due to its anharmonic charge-carrier dispersion, experiments performed on extended samples using THz illumination have revealed only a weak effect. The situation is further complicated by the enormous electromagnetic field intensities required by this highly nonperturbative nonlinear optical phenomenon. Here we argue that the large light intensity required for high-harmonic generation to occur can be reached by exploiting localized plasmons in doped graphene nanostructures. We demonstrate through rigorous time-domain simulations that the synergistic combination of strong plasmonic near-field enhancement and a pronounced intrinsic nonlinearity result in efficient broadband high-harmonic generation within a single material. Our results support the strong potential of nanostructured graphene as a robust, electrically tunable platform for high-harmonic generation.

Suggested Citation

  • Joel D. Cox & Andrea Marini & F. Javier García de Abajo, 2017. "Plasmon-assisted high-harmonic generation in graphene," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14380
    DOI: 10.1038/ncomms14380
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14380
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14380?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia-Qi Wang & Yuan-Hao Yang & Ming Li & Haiqi Zhou & Xin-Biao Xu & Ji-Zhe Zhang & Chun-Hua Dong & Guang-Can Guo & C.-L. Zou, 2022. "Synthetic five-wave mixing in an integrated microcavity for visible-telecom entanglement generation," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.