IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14303.html
   My bibliography  Save this article

Rapid trait evolution drives increased speed and variance in experimental range expansions

Author

Listed:
  • Christopher Weiss-Lehman

    (University of Colorado
    Biofrontiers Institute, University of Colorado)

  • Ruth A Hufbauer

    (Colorado State University
    Graduate Degree Program in Ecology, Colorado State University
    UMR Centre de Biologie et Gestion des Populations, INRA)

  • Brett A Melbourne

    (University of Colorado)

Abstract

Range expansions are central to two ecological issues reshaping patterns of global biodiversity: biological invasions and climate change. Traditional theory considers range expansion as the outcome of the demographic processes of birth, death and dispersal, while ignoring the evolutionary implications of such processes. Recent research suggests evolution could also play a critical role in determining expansion speed but controlled experiments are lacking. Here we use flour beetles (Tribolium castaneum) to show experimentally that mean expansion speed and stochastic variation in speed are both increased by rapid evolution of traits at the expansion edge. We find that higher dispersal ability and lower intrinsic growth rates evolve at the expansion edge compared with spatially nonevolving controls. Furthermore, evolution of these traits is variable, leading to enhanced variance in speed among replicate population expansions. Our results demonstrate that evolutionary processes must be considered alongside demographic ones to better understand and predict range expansions.

Suggested Citation

  • Christopher Weiss-Lehman & Ruth A Hufbauer & Brett A Melbourne, 2017. "Rapid trait evolution drives increased speed and variance in experimental range expansions," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14303
    DOI: 10.1038/ncomms14303
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14303
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomas O. Höök & Carolyn J. Foley & Paris Collingsworth & Leslie Dorworth & Brant Fisher & Jason T. Hoverman & Elizabeth LaRue & Mark Pyron & Jennifer Tank, 2020. "An assessment of the potential impacts of climate change on freshwater habitats and biota of Indiana, USA," Climatic Change, Springer, vol. 163(4), pages 1897-1916, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.