IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14258.html
   My bibliography  Save this article

C-edge loops of arrestin function as a membrane anchor

Author

Listed:
  • Ciara C M. Lally

    (Institute of Medical Physics and Biophysics (CC2), Charité Medical University)

  • Brian Bauer

    (Institute of Medical Physics and Biophysics (CC2), Charité Medical University)

  • Jana Selent

    (Research Programme on Biomedical Informatics, Pompeu Fabra University, Hospital del Mar Medical Research Institute)

  • Martha E Sommer

    (Institute of Medical Physics and Biophysics (CC2), Charité Medical University)

Abstract

G-protein-coupled receptors are membrane proteins that are regulated by a small family of arrestin proteins. During formation of the arrestin–receptor complex, arrestin first interacts with the phosphorylated receptor C terminus in a pre-complex, which activates arrestin for tight receptor binding. Currently, little is known about the structure of the pre-complex and its transition to a high-affinity complex. Here we present molecular dynamics simulations and site-directed fluorescence experiments on arrestin-1 interactions with rhodopsin, showing that loops within the C-edge of arrestin function as a membrane anchor. Activation of arrestin by receptor-attached phosphates is necessary for C-edge engagement of the membrane, and we show that these interactions are distinct in the pre-complex and high-affinity complex in regard to their conformation and orientation. Our results expand current knowledge of C-edge structure and further illuminate the conformational transitions that occur in arrestin along the pathway to tight receptor binding.

Suggested Citation

  • Ciara C M. Lally & Brian Bauer & Jana Selent & Martha E Sommer, 2017. "C-edge loops of arrestin function as a membrane anchor," Nature Communications, Nature, vol. 8(1), pages 1-12, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14258
    DOI: 10.1038/ncomms14258
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14258
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raphael S. Haider & Edda S. F. Matthees & Julia Drube & Mona Reichel & Ulrike Zabel & Asuka Inoue & Andy Chevigné & Cornelius Krasel & Xavier Deupi & Carsten Hoffmann, 2022. "β-arrestin1 and 2 exhibit distinct phosphorylation-dependent conformations when coupling to the same GPCR in living cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.