IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14203.html
   My bibliography  Save this article

Synchronous deglacial thermocline and deep-water ventilation in the eastern equatorial Pacific

Author

Listed:
  • Natalie E. Umling

    (School of the Earth, Ocean and Environment, University of South Carolina)

  • Robert C. Thunell

    (School of the Earth, Ocean and Environment, University of South Carolina)

Abstract

The deep ocean is most likely the primary source of the radiocarbon-depleted CO2 released to the atmosphere during the last deglaciation. While there are well-documented millennial scale Δ14C changes during the most recent deglaciation, most marine records lack the resolution needed to identify more rapid ventilation events. Furthermore, potential age model problems with marine Δ14C records may obscure our understanding of the phase relationship between inter-ocean ventilation changes. Here we reconstruct changes in deep water and thermocline radiocarbon content over the last deglaciation in the eastern equatorial Pacific (EEP) using benthic and planktonic foraminiferal 14C. Our records demonstrate that ventilation of EEP thermocline and deep waters occurred synchronously during the last deglaciation. In addition, both gradual and rapid deglacial radiocarbon changes in these Pacific records are coeval with changes in the Atlantic records. This in-phase behaviour suggests that the Southern Ocean overturning was the dominant driver of changes in the Atlantic and Pacific ventilation during deglaciation.

Suggested Citation

  • Natalie E. Umling & Robert C. Thunell, 2017. "Synchronous deglacial thermocline and deep-water ventilation in the eastern equatorial Pacific," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14203
    DOI: 10.1038/ncomms14203
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14203
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Zhang & Zhoufei Yu & Yue Wang & Xun Gong & Ann Holbourn & Fengming Chang & Heng Liu & Xuhua Cheng & Tiegang Li, 2022. "Thermal coupling of the Indo-Pacific warm pool and Southern Ocean over the past 30,000 years," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.