IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14169.html
   My bibliography  Save this article

Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands

Author

Listed:
  • J. Fester

    (Interdisciplinary Nanoscience Center, Aarhus University)

  • M. García-Melchor

    (Chemical Engineering and SLAC National Accelerator Laboratory, Stanford University
    School of Chemistry, Trinity College Dublin)

  • A. S. Walton

    (School of Chemistry, University of Manchester)

  • M. Bajdich

    (Chemical Engineering and SLAC National Accelerator Laboratory, Stanford University)

  • Z. Li

    (Institute for Storage Ring Facilities, Aarhus)

  • L. Lammich

    (Interdisciplinary Nanoscience Center, Aarhus University)

  • A. Vojvodic

    (University of Pennsylvania)

  • J. V. Lauritsen

    (Interdisciplinary Nanoscience Center, Aarhus University)

Abstract

Transition metal oxides show great promise as Earth-abundant catalysts for the oxygen evolution reaction in electrochemical water splitting. However, progress in the development of highly active oxide nanostructures is hampered by a lack of knowledge of the location and nature of the active sites. Here we show, through atom-resolved scanning tunnelling microscopy, X-ray spectroscopy and computational modelling, how hydroxyls form from water dissociation at under coordinated cobalt edge sites of cobalt oxide nanoislands. Surprisingly, we find that an additional water molecule acts to promote all the elementary steps of the dissociation process and subsequent hydrogen migration, revealing the important assisting role of a water molecule in its own dissociation process on a metal oxide. Inspired by the experimental findings, we theoretically model the oxygen evolution reaction activity of cobalt oxide nanoislands and show that the nanoparticle metal edges also display favourable adsorption energetics for water oxidation under electrochemical conditions.

Suggested Citation

  • J. Fester & M. García-Melchor & A. S. Walton & M. Bajdich & Z. Li & L. Lammich & A. Vojvodic & J. V. Lauritsen, 2017. "Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14169
    DOI: 10.1038/ncomms14169
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14169
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sihong Wang & Qu Jiang & Shenghong Ju & Chia-Shuo Hsu & Hao Ming Chen & Di Zhang & Fang Song, 2022. "Identifying the geometric catalytic active sites of crystalline cobalt oxyhydroxides for oxygen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Earl Matthew Davis & Arno Bergmann & Chao Zhan & Helmut Kuhlenbeck & Beatriz Roldan Cuenya, 2023. "Comparative study of Co3O4(111), CoFe2O4(111), and Fe3O4(111) thin film electrocatalysts for the oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.