IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms13918.html
   My bibliography  Save this article

Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice

Author

Listed:
  • Sebabrata Mukherjee

    (Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Sciences (IPaQS), Heriot-Watt University)

  • Alexander Spracklen

    (Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Sciences (IPaQS), Heriot-Watt University)

  • Manuel Valiente

    (Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Sciences (IPaQS), Heriot-Watt University)

  • Erika Andersson

    (Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Sciences (IPaQS), Heriot-Watt University)

  • Patrik Öhberg

    (Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Sciences (IPaQS), Heriot-Watt University)

  • Nathan Goldman

    (Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles)

  • Robert R. Thomson

    (Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Sciences (IPaQS), Heriot-Watt University)

Abstract

Topological quantum matter can be realized by subjecting engineered systems to time-periodic modulations. In analogy with static systems, periodically driven quantum matter can be topologically classified by topological invariants, whose non-zero value guarantees the presence of robust edge modes. In the high-frequency limit of the drive, topology is described by standard topological invariants, such as Chern numbers. Away from this limit, these topological numbers become irrelevant, and novel topological invariants must be introduced to capture topological edge transport. The corresponding edge modes were coined anomalous topological edge modes, to highlight their intriguing origin. Here we demonstrate the experimental observation of these topological edge modes in a 2D photonic lattice, where these propagating edge states are shown to coexist with a quasi-localized bulk. Our work opens an exciting route for the exploration of topological physics in time-modulated systems operating away from the high-frequency regime.

Suggested Citation

  • Sebabrata Mukherjee & Alexander Spracklen & Manuel Valiente & Erika Andersson & Patrik Öhberg & Nathan Goldman & Robert R. Thomson, 2017. "Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms13918
    DOI: 10.1038/ncomms13918
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13918
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13918?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert-Jan Slager & Adrien Bouhon & F. Nur Ünal, 2024. "Non-Abelian Floquet braiding and anomalous Dirac string phase in periodically driven systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Ivanov, Sergey K. & Kartashov, Yaroslav V., 2023. "π-solitons on a ring of waveguides," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Yesenia A. García Jomaso & Brenda Vargas & David Ley Domínguez & Román J. Armenta-Rico & Huziel E. Sauceda & César L. Ordoñez-Romero & Hugo A. Lara-García & Arturo Camacho-Guardian & Giuseppe Pirrucci, 2024. "Intercavity polariton slows down dynamics in strongly coupled cavities," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Ren, Boquan & Kartashov, Yaroslav V. & Wang, Hongguang & Li, Yongdong & Zhang, Yiqi, 2023. "Floquet topological insulators with hybrid edges," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    5. Yanan Wang & Hai-Xiao Wang & Li Liang & Weiwei Zhu & Longzhen Fan & Zhi-Kang Lin & Feifei Li & Xiao Zhang & Pi-Gang Luan & Yin Poo & Jian-Hua Jiang & Guang-Yu Guo, 2023. "Hybrid topological photonic crystals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Sadeq Bahmani & Amir Nader Askarpour, 2023. "Anomalous Floquet topological phase in a lattice of LC resonators," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-11, June.
    7. Jiabin Yu & Rui-Xing Zhang & Zhi-Da Song, 2021. "Dynamical symmetry indicators for Floquet crystals," Nature Communications, Nature, vol. 12(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms13918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.