IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13873.html
   My bibliography  Save this article

Kinetic disruption of lipid rafts is a mechanosensor for phospholipase D

Author

Listed:
  • E. Nicholas Petersen

    (The Scripps Research Institute)

  • Hae-Won Chung

    (The Scripps Research Institute)

  • Arman Nayebosadri

    (The Scripps Research Institute)

  • Scott B. Hansen

    (The Scripps Research Institute)

Abstract

The sensing of physical force, mechanosensation, underlies two of five human senses—touch and hearing. How transduction of force in a membrane occurs remains unclear. We asked if a biological membrane could employ kinetic energy to transduce a signal absent tension. Here we show that lipid rafts are dynamic compartments that inactivate the signalling enzyme phospholipase D2 (PLD2) by sequestering the enzyme from its substrate. Mechanical disruption of the lipid rafts activates PLD2 by mixing the enzyme with its substrate to produce the signalling lipid phosphatidic acid (PA). We calculate a latency time of

Suggested Citation

  • E. Nicholas Petersen & Hae-Won Chung & Arman Nayebosadri & Scott B. Hansen, 2016. "Kinetic disruption of lipid rafts is a mechanosensor for phospholipase D," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13873
    DOI: 10.1038/ncomms13873
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13873
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erumbi S. Rangarajan & Julian L. Bois & Scott B. Hansen & Tina Izard, 2024. "High-resolution snapshots of the talin auto-inhibitory states suggest roles in cell adhesion and signaling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Marta Ukleja & Lara Kricks & Gabriel Torrens & Ilaria Peschiera & Ines Rodrigues-Lopes & Marcin Krupka & Julia García-Fernández & Roberto Melero & Rosa Campo & Ana Eulalio & André Mateus & María López, 2024. "Flotillin-mediated stabilization of unfolded proteins in bacterial membrane microdomains," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    3. Michal Dudek & Dharshika R. J. Pathiranage & Beatriz Bano-Otalora & Anna Paszek & Natalie Rogers & Cátia F. Gonçalves & Craig Lawless & Dong Wang & Zhuojing Luo & Liu Yang & Farshid Guilak & Judith A., 2023. "Mechanical loading and hyperosmolarity as a daily resetting cue for skeletal circadian clocks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.