IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13810.html
   My bibliography  Save this article

Observation of spontaneous spin-splitting in the band structure of an n-type zinc-blende ferromagnetic semiconductor

Author

Listed:
  • Le Duc Anh

    (The University of Tokyo
    Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo)

  • Pham Nam Hai

    (Tokyo Institute of Technology
    Center for Spintronics Research Network (CSRN), The University of Tokyo)

  • Masaaki Tanaka

    (The University of Tokyo
    Center for Spintronics Research Network (CSRN), The University of Tokyo)

Abstract

Large spin-splitting in the conduction band and valence band of ferromagnetic semiconductors, predicted by the influential mean-field Zener model and assumed in many spintronic device proposals, has never been observed in the mainstream p-type Mn-doped ferromagnetic semiconductors. Here, using tunnelling spectroscopy in Esaki-diode structures, we report the observation of such a large spontaneous spin-splitting energy (31.7–50 meV) in the conduction band bottom of n-type ferromagnetic semiconductor (In,Fe)As, which is surprising considering the very weak s-d exchange interaction reported in several zinc-blende type semiconductors. The mean-field Zener model also fails to explain consistently the ferromagnetism and the spin-splitting energy of (In,Fe)As, because we found that the Curie temperature values calculated using the observed spin-splitting energies are much lower than the experimental ones by a factor of 400. These results urge the need for a more sophisticated theory of ferromagnetic semiconductors.

Suggested Citation

  • Le Duc Anh & Pham Nam Hai & Masaaki Tanaka, 2016. "Observation of spontaneous spin-splitting in the band structure of an n-type zinc-blende ferromagnetic semiconductor," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13810
    DOI: 10.1038/ncomms13810
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13810
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13810?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiquan Lin & Laipan Zhu & Zhen Tang & Zhong Lin Wang, 2022. "Spin-selected electron transfer in liquid–solid contact electrification," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.