IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13762.html
   My bibliography  Save this article

Additional energy scale in SmB6 at low-temperature

Author

Listed:
  • L. Jiao

    (Max-Planck-Institute for Chemical Physics of Solids)

  • S. Rößler

    (Max-Planck-Institute for Chemical Physics of Solids)

  • D. J. Kim

    (University of California)

  • L. H. Tjeng

    (Max-Planck-Institute for Chemical Physics of Solids)

  • Z. Fisk

    (University of California)

  • F. Steglich

    (Max-Planck-Institute for Chemical Physics of Solids
    Center for Correlated Matter, Zhejiang University
    Institute of Physics, Chinese Academy of Sciences)

  • S. Wirth

    (Max-Planck-Institute for Chemical Physics of Solids)

Abstract

Topological insulators give rise to exquisite electronic properties because of their spin-momentum locked Dirac-cone-like band structure. Recently, it has been suggested that the required opposite parities between valence and conduction band along with strong spin-orbit coupling can be realized in correlated materials. Particularly, SmB6 has been proposed as candidate material for a topological Kondo insulator. Here we observe, by utilizing scanning tunnelling microscopy and spectroscopy down to 0.35 K, several states within the hybridization gap of about ±20 meV on well characterized (001) surfaces of SmB6. The spectroscopic response to impurities and magnetic fields allows to distinguish between dominating bulk and surface contributions to these states. The surface contributions develop particularly strongly below about 7 K, which can be understood in terms of a suppressed Kondo effect at the surface. Our high-resolution data provide insight into the electronic structure of SmB6, which reconciles many current discrepancies on this compound.

Suggested Citation

  • L. Jiao & S. Rößler & D. J. Kim & L. H. Tjeng & Z. Fisk & F. Steglich & S. Wirth, 2016. "Additional energy scale in SmB6 at low-temperature," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13762
    DOI: 10.1038/ncomms13762
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13762
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Younsik Kim & Min-Seok Kim & Dongwook Kim & Minjae Kim & Minsoo Kim & Cheng-Maw Cheng & Joonyoung Choi & Saegyeol Jung & Donghui Lu & Jong Hyuk Kim & Soohyun Cho & Dongjoon Song & Dongjin Oh & Li Yu &, 2023. "Kondo interaction in FeTe and its potential role in the magnetic order," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.