IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13691.html
   My bibliography  Save this article

Interrogating the degradation pathways of unstable mRNAs with XRN1-resistant sequences

Author

Listed:
  • Volker Boehm

    (Institute for Genetics, University of Cologne)

  • Jennifer V. Gerbracht

    (Institute for Genetics, University of Cologne)

  • Marie-Charlotte Marx

    (Institute for Genetics, University of Cologne)

  • Niels H. Gehring

    (Institute for Genetics, University of Cologne)

Abstract

The turnover of messenger RNAs (mRNAs) is a key regulatory step of gene expression in eukaryotic cells. Due to the complexity of the mammalian degradation machinery, the contribution of decay factors to the directionality of mRNA decay is poorly understood. Here we characterize a molecular tool to interrogate mRNA turnover via the detection of XRN1-resistant decay fragments (xrFrag). Using nonsense-mediated mRNA decay (NMD) as a model pathway, we establish xrFrag analysis as a robust indicator of accelerated 5′–3′ mRNA decay. In tethering assays, monitoring xrFrag accumulation allows to distinguish decapping and endocleavage activities from deadenylation. Moreover, xrFrag analysis of mRNA degradation induced by miRNAs, AU-rich elements (AREs) as well as the 3′ UTRs of cytokine mRNAs reveals the contribution of 5′–3′ decay and endonucleolytic cleavage. Our work uncovers formerly unrecognized modes of mRNA turnover and establishes xrFrag as a powerful tool for RNA decay analyses.

Suggested Citation

  • Volker Boehm & Jennifer V. Gerbracht & Marie-Charlotte Marx & Niels H. Gehring, 2016. "Interrogating the degradation pathways of unstable mRNAs with XRN1-resistant sequences," Nature Communications, Nature, vol. 7(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13691
    DOI: 10.1038/ncomms13691
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13691
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13691?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaolin Niu & Ruirui Sun & Zhifeng Chen & Yirong Yao & Xiaobing Zuo & Chunlai Chen & Xianyang Fang, 2021. "Pseudoknot length modulates the folding, conformational dynamics, and robustness of Xrn1 resistance of flaviviral xrRNAs," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.