IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13566.html
   My bibliography  Save this article

Self-assembly of diphenylalanine peptide with controlled polarization for power generation

Author

Listed:
  • Vu Nguyen

    (University of Minnesota)

  • Ren Zhu

    (University of Minnesota)

  • Kory Jenkins

    (University of Minnesota)

  • Rusen Yang

    (University of Minnesota)

Abstract

Peptides have attracted considerable attention due to their biocompatibility, functional molecular recognition and unique biological and electronic properties. The strong piezoelectricity in diphenylalanine peptide expands its technological potential as a smart material. However, its random and unswitchable polarization has been the roadblock to fulfilling its potential and hence the demonstration of a piezoelectric device remains lacking. Here we show the control of polarization with an electric field applied during the peptide self-assembly process. Uniform polarization is obtained in two opposite directions with an effective piezoelectric constant d33 reaching 17.9 pm V−1. We demonstrate the power generation with a peptide-based power generator that produces an open-circuit voltage of 1.4 V and a power density of 3.3 nW cm−2. Devices enabled by peptides with controlled piezoelectricity provide a renewable and biocompatible energy source for biomedical applications and open up a portal to the next generation of multi-functional electronics compatible with human tissue.

Suggested Citation

  • Vu Nguyen & Ren Zhu & Kory Jenkins & Rusen Yang, 2016. "Self-assembly of diphenylalanine peptide with controlled polarization for power generation," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13566
    DOI: 10.1038/ncomms13566
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13566
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhuomin Zhang & Xuemu Li & Zehua Peng & Xiaodong Yan & Shiyuan Liu & Ying Hong & Yao Shan & Xiaote Xu & Lihan Jin & Bingren Liu & Xinyu Zhang & Yu Chai & Shujun Zhang & Alex K.-Y. Jen & Zhengbao Yang, 2023. "Active self-assembly of piezoelectric biomolecular films via synergistic nanoconfinement and in-situ poling," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.