IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13334.html
   My bibliography  Save this article

Epigenetic engineering reveals a balance between histone modifications and transcription in kinetochore maintenance

Author

Listed:
  • Oscar Molina

    (Wellcome Trust Centre for Cell Biology, University of Edinburgh)

  • Giulia Vargiu

    (Wellcome Trust Centre for Cell Biology, University of Edinburgh)

  • Maria Alba Abad

    (Wellcome Trust Centre for Cell Biology, University of Edinburgh)

  • Alisa Zhiteneva

    (Wellcome Trust Centre for Cell Biology, University of Edinburgh)

  • A. Arockia Jeyaprakash

    (Wellcome Trust Centre for Cell Biology, University of Edinburgh)

  • Hiroshi Masumoto

    (Laboratory of Cell Engineering, Kazusa DNA research Institute)

  • Natalay Kouprina

    (Genome Structure and Function Group, Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health)

  • Vladimir Larionov

    (Genome Structure and Function Group, Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health)

  • William C. Earnshaw

    (Wellcome Trust Centre for Cell Biology, University of Edinburgh)

Abstract

Centromeres consist of specialized centrochromatin containing CENP-A nucleosomes intermingled with H3 nucleosomes carrying transcription-associated modifications. We have designed a novel synthetic biology ‘in situ epistasis’ analysis in which H3 dimethylated on lysine 4 (H3K4me2) demethylase LSD2 plus synthetic modules with competing activities are simultaneously targeted to a synthetic alphoidtetO HAC centromere. This allows us to uncouple transcription from histone modifications at the centromere. Here, we report that H3K4me2 loss decreases centromeric transcription, CENP-A assembly and stability and causes spreading of H3K9me3 across the HAC, ultimately inactivating the centromere. Surprisingly, CENP-28/Eaf6-induced transcription of the alphoidtetO array associated with H4K12 acetylation does not rescue the phenotype, whereas p65-induced transcription associated with H3K9 acetylation does rescue. Thus mitotic transcription plus histone modifications including H3K9ac constitute the ‘epigenetic landscape’ allowing CENP-A assembly and centrochromatin maintenance. H3K4me2 is required for the transcription and H3K9ac may form a barrier to prevent heterochromatin spreading and kinetochore inactivation at human centromeres.

Suggested Citation

  • Oscar Molina & Giulia Vargiu & Maria Alba Abad & Alisa Zhiteneva & A. Arockia Jeyaprakash & Hiroshi Masumoto & Natalay Kouprina & Vladimir Larionov & William C. Earnshaw, 2016. "Epigenetic engineering reveals a balance between histone modifications and transcription in kinetochore maintenance," Nature Communications, Nature, vol. 7(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13334
    DOI: 10.1038/ncomms13334
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13334
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13334?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catherine Naughton & Covadonga Huidobro & Claudia R. Catacchio & Adam Buckle & Graeme R. Grimes & Ryu-Suke Nozawa & Stefania Purgato & Mariano Rocchi & Nick Gilbert, 2022. "Human centromere repositioning activates transcription and opens chromatin fibre structure," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.