IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13221.html
   My bibliography  Save this article

Chromosome biorientation produces hundreds of piconewtons at a metazoan kinetochore

Author

Listed:
  • Anna A. Ye

    (University of Massachusetts
    Molecular and Cellular Biology Graduate Program, University of Massachusetts)

  • Stuart Cane

    (University of Massachusetts
    Molecular and Cellular Biology Graduate Program, University of Massachusetts)

  • Thomas J. Maresca

    (University of Massachusetts
    Molecular and Cellular Biology Graduate Program, University of Massachusetts)

Abstract

High-fidelity transmission of the genome through cell division requires that all sister kinetochores bind to dynamic microtubules (MTs) from opposite spindle poles. The application of opposing forces to this bioriented configuration produces tension that stabilizes kinetochore–microtubule (kt–MT) attachments. Defining the magnitude of force that is applied to kinetochores is central to understanding the mechano-molecular underpinnings of chromosome segregation; however, existing kinetochore force measurements span orders of magnitude. Here we measure kinetochore forces by engineering two calibrated force sensors into the Drosophila kinetochore protein centromere protein (CENP)-C. Measurements of both reporters indicate that they are, on average, under ∼1–2 piconewtons (pNs) of force at metaphase. Based on estimates of the number of CENP-C molecules and MTs per Drosophila kinetochore and envisioning kinetochore linkages arranged such that they distribute forces across them, we propose that kinetochore fibres (k-fibres) exert hundreds of pNs of poleward-directed force to bioriented kinetochores.

Suggested Citation

  • Anna A. Ye & Stuart Cane & Thomas J. Maresca, 2016. "Chromosome biorientation produces hundreds of piconewtons at a metazoan kinetochore," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13221
    DOI: 10.1038/ncomms13221
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13221
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yusuke Takenoshita & Masatoshi Hara & Tatsuo Fukagawa, 2022. "Recruitment of two Ndc80 complexes via the CENP-T pathway is sufficient for kinetochore functions," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.