IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13189.html
   My bibliography  Save this article

CaMKII induces permeability transition through Drp1 phosphorylation during chronic β-AR stimulation

Author

Listed:
  • Shangcheng Xu

    (Mitochondria and Metabolism Center, University of Washington
    Third Military Medical University)

  • Pei Wang

    (Mitochondria and Metabolism Center, University of Washington)

  • Huiliang Zhang

    (Mitochondria and Metabolism Center, University of Washington)

  • Guohua Gong

    (Mitochondria and Metabolism Center, University of Washington)

  • Nicolas Gutierrez Cortes

    (Mitochondria and Metabolism Center, University of Washington)

  • Weizhong Zhu

    (Nantong University School of Pharmacy)

  • Yisang Yoon

    (Georgia Regents University)

  • Rong Tian

    (Mitochondria and Metabolism Center, University of Washington)

  • Wang Wang

    (Mitochondria and Metabolism Center, University of Washington)

Abstract

Mitochondrial permeability transition pore (mPTP) is involved in cardiac dysfunction during chronic β-adrenergic receptor (β-AR) stimulation. The mechanism by which chronic β-AR stimulation leads to mPTP openings is elusive. Here, we show that chronic administration of isoproterenol (ISO) persistently increases the frequency of mPTP openings followed by mitochondrial damage and cardiac dysfunction. Mechanistically, this effect is mediated by phosphorylation of mitochondrial fission protein, dynamin-related protein 1 (Drp1), by Ca2+/calmodulin-dependent kinase II (CaMKII) at a serine 616 (S616) site. Mutating this phosphorylation site or inhibiting Drp1 activity blocks CaMKII- or ISO-induced mPTP opening and myocyte death in vitro and rescues heart hypertrophy in vivo. In human failing hearts, Drp1 phosphorylation at S616 is increased. These results uncover a pathway downstream of chronic β-AR stimulation that links CaMKII, Drp1 and mPTP to bridge cytosolic stress signal with mitochondrial dysfunction in the heart.

Suggested Citation

  • Shangcheng Xu & Pei Wang & Huiliang Zhang & Guohua Gong & Nicolas Gutierrez Cortes & Weizhong Zhu & Yisang Yoon & Rong Tian & Wang Wang, 2016. "CaMKII induces permeability transition through Drp1 phosphorylation during chronic β-AR stimulation," Nature Communications, Nature, vol. 7(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13189
    DOI: 10.1038/ncomms13189
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13189
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueqiang Wang & Xing Zhang & Ke Cao & Mengqi Zeng & Xuyang Fu & Adi Zheng & Feng Zhang & Feng Gao & Xuan Zou & Hao Li & Min Li & Weiqiang Lv & Jie Xu & Jiangang Long & Weijin Zang & Jinghai Chen & Fen, 2022. "Cardiac disruption of SDHAF4-mediated mitochondrial complex II assembly promotes dilated cardiomyopathy," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Jenny Zhe Liao & Hyung-lok Chung & Claire Shih & Kenneth Kin Lam Wong & Debdeep Dutta & Zelha Nil & Catherine Grace Burns & Oguz Kanca & Ye-Jin Park & Zhongyuan Zuo & Paul C. Marcogliese & Katherine S, 2024. "Cdk8/CDK19 promotes mitochondrial fission through Drp1 phosphorylation and can phenotypically suppress pink1 deficiency in Drosophila," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.