IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13065.html
   My bibliography  Save this article

A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries

Author

Listed:
  • Zhen Li

    (School of Chemical and Biomedical Engineering, Nanyang Technological University)

  • Jintao Zhang

    (School of Chemical and Biomedical Engineering, Nanyang Technological University)

  • Buyuan Guan

    (School of Chemical and Biomedical Engineering, Nanyang Technological University)

  • Da Wang

    (Beijing Computational Science Research Center)

  • Li-Min Liu

    (Beijing Computational Science Research Center)

  • Xiong Wen (David) Lou

    (School of Chemical and Biomedical Engineering, Nanyang Technological University
    State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University)

Abstract

Lithium–sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium–sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.

Suggested Citation

  • Zhen Li & Jintao Zhang & Buyuan Guan & Da Wang & Li-Min Liu & Xiong Wen (David) Lou, 2016. "A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13065
    DOI: 10.1038/ncomms13065
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13065
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wanqing Song & Xinyi Yang & Tao Zhang & Zechuan Huang & Haozhi Wang & Jie Sun & Yunhua Xu & Jia Ding & Wenbin Hu, 2024. "Optimizing potassium polysulfides for high performance potassium-sulfur batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.