IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12818.html
   My bibliography  Save this article

Low-oxygen waters limited habitable space for early animals

Author

Listed:
  • R. Tostevin

    (University College London
    Present address: Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK.)

  • R. A. Wood

    (School of GeoSciences, The University of Edinburgh)

  • G. A. Shields

    (University College London)

  • S. W. Poulton

    (School of Earth and Environment, University of Leeds)

  • R. Guilbaud

    (University of Cambridge)

  • F. Bowyer

    (School of GeoSciences, The University of Edinburgh)

  • A. M. Penny

    (School of GeoSciences, The University of Edinburgh)

  • T. He

    (University College London)

  • A. Curtis

    (School of GeoSciences, The University of Edinburgh)

  • K. H. Hoffmann

    (Geological Survey of Namibia)

  • M. O. Clarkson

    (School of GeoSciences, The University of Edinburgh
    University of Otago)

Abstract

The oceans at the start of the Neoproterozoic Era (1,000–541 million years ago, Ma) were dominantly anoxic, but may have become progressively oxygenated, coincident with the rise of animal life. However, the control that oxygen exerted on the development of early animal ecosystems remains unclear, as previous research has focussed on the identification of fully anoxic or oxic conditions, rather than intermediate redox levels. Here we report anomalous cerium enrichments preserved in carbonate rocks across bathymetric basin transects from nine localities of the Nama Group, Namibia (∼550–541 Ma). In combination with Fe-based redox proxies, these data suggest that low-oxygen conditions occurred in a narrow zone between well-oxygenated surface waters and fully anoxic deep waters. Although abundant in well-oxygenated environments, early skeletal animals did not occupy oxygen impoverished regions of the shelf, demonstrating that oxygen availability (probably >10 μM) was a key requirement for the development of early animal-based ecosystems.

Suggested Citation

  • R. Tostevin & R. A. Wood & G. A. Shields & S. W. Poulton & R. Guilbaud & F. Bowyer & A. M. Penny & T. He & A. Curtis & K. H. Hoffmann & M. O. Clarkson, 2016. "Low-oxygen waters limited habitable space for early animals," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12818
    DOI: 10.1038/ncomms12818
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12818
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12818?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang Zheng & Anwen Zhou & Swapan K. Sahoo & Morrison R. Nolan & Chadlin M. Ostrander & Ruoyu Sun & Ariel D. Anbar & Shuhai Xiao & Jiubin Chen, 2023. "Recurrent photic zone euxinia limited ocean oxygenation and animal evolution during the Ediacaran," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Lucas B. Cherry & Geoffrey J. Gilleaudeau & Dmitriy V. Grazhdankin & Stephen J. Romaniello & Aaron J. Martin & Alan J. Kaufman, 2022. "A diverse Ediacara assemblage survived under low-oxygen conditions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.