IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12799.html
   My bibliography  Save this article

Anks1a regulates COPII-mediated anterograde transport of receptor tyrosine kinases critical for tumorigenesis

Author

Listed:
  • Haeryung Lee

    (Sookmyung Women’s University)

  • Hyuna Noh

    (Sookmyung Women’s University)

  • Jiyoung Mun

    (College of Health Science, Eulji University)

  • Changkyu Gu

    (Massachusetts General Hospital)

  • Sanja Sever

    (Massachusetts General Hospital)

  • Soochul Park

    (Sookmyung Women’s University)

Abstract

ErbB2 signalling, which is amplified by EphA2 binding, is an important therapeutic target for breast cancer. Despite the importance of the EphA2/ErbB2 complex in promoting breast tumorigenesis, the mechanism by which these receptor tyrosine kinases (RTKs) are exported from the endoplasmic reticulum (ER) remains poorly understood. Here we report that the PTB adaptor Anks1a is specifically localized to the ER on its own serine phosphorylation. Once there, Anks1a acts as an important regulator of COPII-mediated EphA2 ER export. The Anks1a ankyrin repeat domain binds EphA2 and causes it to accumulate at sites of ER exit. Simultaneously, the Anks1a PTB domain binds Sec23. This induces internalization of EphA2 via COPII vesicles, while Anks1a remains behind on the ER membrane. EphA2 also binds ErbB2 in the ER and seems to load ErbB2 into growing COPII carriers. Together, our study reveals a novel mechanism that regulates the loading of RTKs into COPII vesicles.

Suggested Citation

  • Haeryung Lee & Hyuna Noh & Jiyoung Mun & Changkyu Gu & Sanja Sever & Soochul Park, 2016. "Anks1a regulates COPII-mediated anterograde transport of receptor tyrosine kinases critical for tumorigenesis," Nature Communications, Nature, vol. 7(1), pages 1-12, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12799
    DOI: 10.1038/ncomms12799
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12799
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12799?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiyeon Lee & Haeryung Lee & Hyein Lee & Miram Shin & Min-Gi Shin & Jinsoo Seo & Eun Jeong Lee & Sun Ah Park & Soochul Park, 2023. "ANKS1A regulates LDL receptor-related protein 1 (LRP1)-mediated cerebrovascular clearance in brain endothelial cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.