IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12722.html
   My bibliography  Save this article

Observational learning computations in neurons of the human anterior cingulate cortex

Author

Listed:
  • Michael R. Hill

    (California Institute of Technology
    Computation and Neural Systems, California Institute of Technology
    University of California (UCLA)
    Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech H4)

  • Erie D. Boorman

    (Computation and Neural Systems, California Institute of Technology
    California Institute of Technology
    Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, John Radcliffe Hospital
    Present address: Center for Mind & Brain, University of California Davis, Davis, California 95618, USA)

  • Itzhak Fried

    (University of California (UCLA)
    Functional Neurosurgery Unit, Tel-Aviv Medical Centre and Sackler Faculty of Medicine, Tel-Aviv University)

Abstract

When learning from direct experience, neurons in the primate brain have been shown to encode a teaching signal used by algorithms in artificial intelligence: the reward prediction error (PE)—the difference between how rewarding an event is, and how rewarding it was expected to be. However, in humans and other species learning often takes place by observing other individuals. Here, we show that, when humans observe other players in a card game, neurons in their rostral anterior cingulate cortex (rACC) encode both the expected value of an observed choice, and the PE after the outcome was revealed. Notably, during the same task neurons recorded in the amygdala (AMY) and the rostromedial prefrontal cortex (rmPFC) do not exhibit this type of encoding. Our results suggest that humans learn by observing others, at least in part through the encoding of observational PEs in single neurons in the rACC.

Suggested Citation

  • Michael R. Hill & Erie D. Boorman & Itzhak Fried, 2016. "Observational learning computations in neurons of the human anterior cingulate cortex," Nature Communications, Nature, vol. 7(1), pages 1-12, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12722
    DOI: 10.1038/ncomms12722
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12722
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koen M. M. Frolichs & Gabriela Rosenblau & Christoph W. Korn, 2022. "Incorporating social knowledge structures into computational models," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. M. A. Pisauro & E. F. Fouragnan & D. H. Arabadzhiyska & M. A. J. Apps & M. G. Philiastides, 2022. "Neural implementation of computational mechanisms underlying the continuous trade-off between cooperation and competition," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Sam Ereira & Raymond J Dolan & Zeb Kurth-Nelson, 2018. "Agent-specific learning signals for self–other distinction during mentalising," PLOS Biology, Public Library of Science, vol. 16(4), pages 1-32, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.