IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12500.html
   My bibliography  Save this article

Long-term time-lapse microscopy of C. elegans post-embryonic development

Author

Listed:
  • Nicola Gritti

    (FOM Institute AMOLF)

  • Simone Kienle

    (FOM Institute AMOLF)

  • Olga Filina

    (FOM Institute AMOLF)

  • Jeroen Sebastiaan van Zon

    (FOM Institute AMOLF)

Abstract

We present a microscopy technique that enables long-term time-lapse microscopy at single-cell resolution in moving and feeding Caenorhabditis elegans larvae. Time-lapse microscopy of C. elegans post-embryonic development is challenging, as larvae are highly motile. Moreover, immobilization generally leads to rapid developmental arrest. Instead, we confine larval movement to microchambers that contain bacteria as food, and use fast image acquisition and image analysis to follow the dynamics of cells inside individual larvae, as they move within each microchamber. This allows us to perform fluorescence microscopy of 10–20 animals in parallel with 20 min time resolution. We demonstrate the power of our approach by analysing the dynamics of cell division, cell migration and gene expression over the full ∼48 h of development from larva to adult. Our approach now makes it possible to study the behaviour of individual cells inside the body of a feeding and growing animal.

Suggested Citation

  • Nicola Gritti & Simone Kienle & Olga Filina & Jeroen Sebastiaan van Zon, 2016. "Long-term time-lapse microscopy of C. elegans post-embryonic development," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12500
    DOI: 10.1038/ncomms12500
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12500
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klement Stojanovski & Ioana Gheorghe & Peter Lenart & Anne Lanjuin & William B. Mair & Benjamin D. Towbin, 2023. "Maintenance of appropriate size scaling of the C. elegans pharynx by YAP-1," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Damien G Hicks & Terence P Speed & Mohammed Yassin & Sarah M Russell, 2019. "Maps of variability in cell lineage trees," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-32, February.
    3. Klement Stojanovski & Helge Großhans & Benjamin D. Towbin, 2022. "Coupling of growth rate and developmental tempo reduces body size heterogeneity in C. elegans," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.