IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12484.html
   My bibliography  Save this article

Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults

Author

Listed:
  • Andrew L. Young

    (Washington University School of Medicine
    Center for Genome Sciences and Systems Biology, Washington University School of Medicine)

  • Grant A. Challen

    (Washington University School of Medicine)

  • Brenda M. Birmann

    (Brigham and Women’s Hospital and Harvard Medical School)

  • Todd E. Druley

    (Washington University School of Medicine
    Center for Genome Sciences and Systems Biology, Washington University School of Medicine)

Abstract

Clonal haematopoiesis is thought to be a rare condition that increases in frequency with age and predisposes individuals to haematological malignancy. Recent studies, utilizing next-generation sequencing (NGS), observed haematopoietic clones in 10% of 70-year olds and rarely in younger individuals. However, these studies could only detect common haematopoietic clones—>0.02 variant allele fraction (VAF)—due to the error rate of NGS. To identify and characterize clonal mutations below this threshold, here we develop methods for targeted error-corrected sequencing, which enable the accurate detection of clonal mutations as rare as 0.0003 VAF. We apply these methods to study serially banked peripheral blood samples from healthy 50–60-year-old participants in the Nurses’ Health Study. We observe clonal haematopoiesis, frequently harbouring mutations in DNMT3A and TET2, in 95% of individuals studied. These clonal mutations are often stable longitudinally and present in multiple haematopoietic compartments, suggesting a long-lived haematopoietic stem and progenitor cell of origin.

Suggested Citation

  • Andrew L. Young & Grant A. Challen & Brenda M. Birmann & Todd E. Druley, 2016. "Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12484
    DOI: 10.1038/ncomms12484
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12484
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oriol Pich & Iker Reyes-Salazar & Abel Gonzalez-Perez & Nuria Lopez-Bigas, 2022. "Discovering the drivers of clonal hematopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Peng Dai & Lucia Ruojia Wu & Sherry Xi Chen & Michael Xiangjiang Wang & Lauren Yuxuan Cheng & Jinny Xuemeng Zhang & Pengying Hao & Weijie Yao & Jabra Zarka & Ghayas C. Issa & Lawrence Kwong & David Yu, 2021. "Calibration-free NGS quantitation of mutations below 0.01% VAF," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.