IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12370.html
   My bibliography  Save this article

Zero-temperature quantum annealing bottlenecks in the spin-glass phase

Author

Listed:
  • Sergey Knysh

    (QuAIL, NASA Ames Research Center, Moffett Field
    SGT Inc.)

Abstract

A promising approach to solving hard binary optimization problems is quantum adiabatic annealing in a transverse magnetic field. An instantaneous ground state—initially a symmetric superposition of all possible assignments of N qubits—is closely tracked as it becomes more and more localized near the global minimum of the classical energy. Regions where the energy gap to excited states is small (for instance at the phase transition) are the algorithm’s bottlenecks. Here I show how for large problems the complexity becomes dominated by O(log N) bottlenecks inside the spin-glass phase, where the gap scales as a stretched exponential. For smaller N, only the gap at the critical point is relevant, where it scales polynomially, as long as the phase transition is second order. This phenomenon is demonstrated rigorously for the two-pattern Gaussian Hopfield model. Qualitative comparison with the Sherrington-Kirkpatrick model leads to similar conclusions.

Suggested Citation

  • Sergey Knysh, 2016. "Zero-temperature quantum annealing bottlenecks in the spin-glass phase," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12370
    DOI: 10.1038/ncomms12370
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12370
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.