IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12270.html
   My bibliography  Save this article

Spatial clustering of tuning in mouse primary visual cortex

Author

Listed:
  • Dario L. Ringach

    (David Geffen School of Medicine, University of California
    University of California)

  • Patrick J. Mineault

    (David Geffen School of Medicine, University of California)

  • Elaine Tring

    (David Geffen School of Medicine, University of California)

  • Nicholas D. Olivas

    (David Geffen School of Medicine, University of California)

  • Pablo Garcia-Junco-Clemente

    (David Geffen School of Medicine, University of California
    Present address: Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and CIBERNED)

  • Joshua T. Trachtenberg

    (David Geffen School of Medicine, University of California)

Abstract

The primary visual cortex of higher mammals is organized into two-dimensional maps, where the preference of cells for stimulus parameters is arranged regularly on the cortical surface. In contrast, the preference of neurons in the rodent appears to be arranged randomly, in what is termed a salt-and-pepper map. Here we revisited the spatial organization of receptive fields in mouse primary visual cortex by measuring the tuning of pyramidal neurons in the joint orientation and spatial frequency domain. We found that the similarity of tuning decreases as a function of cortical distance, revealing a weak but statistically significant spatial clustering. Clustering was also observed across different cortical depths, consistent with a columnar organization. Thus, the mouse visual cortex is not strictly a salt-and-pepper map. At least on a local scale, it resembles a degraded version of the organization seen in higher mammals, hinting at a possible common origin.

Suggested Citation

  • Dario L. Ringach & Patrick J. Mineault & Elaine Tring & Nicholas D. Olivas & Pablo Garcia-Junco-Clemente & Joshua T. Trachtenberg, 2016. "Spatial clustering of tuning in mouse primary visual cortex," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12270
    DOI: 10.1038/ncomms12270
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12270
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12270?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiashu Liu & Yingtian He & Andreanne Lavoie & Guy Bouvier & Bao-hua Liu, 2023. "A direction-selective cortico-brainstem pathway adaptively modulates innate behaviors," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    2. Elaine Tring & Konnie K. Duan & Dario L. Ringach, 2022. "ON/OFF domains shape receptive field structure in mouse visual cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Han Chin Wang & Amy M. LeMessurier & Daniel E. Feldman, 2022. "Tuning instability of non-columnar neurons in the salt-and-pepper whisker map in somatosensory cortex," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Peichao Li & Anupam K. Garg & Li A. Zhang & Mohammad S. Rashid & Edward M. Callaway, 2022. "Cone opponent functional domains in primary visual cortex combine signals for color appearance mechanisms," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.