Author
Listed:
- Michael Pilsl
(Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie)
- Corinne Crucifix
(IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964
CNRS/Strasbourg University)
- Gabor Papai
(IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964
CNRS/Strasbourg University)
- Ferdinand Krupp
(IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964
CNRS/Strasbourg University)
- Robert Steinbauer
(Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie
Present address: Sandoz GmbH, Biochemiestraße 10, 6250 Kundl, Austria.)
- Joachim Griesenbeck
(Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie)
- Philipp Milkereit
(Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie)
- Herbert Tschochner
(Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie)
- Patrick Schultz
(IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964
CNRS/Strasbourg University)
Abstract
Eukaryotic RNA polymerase I (Pol I) is specialized in rRNA gene transcription synthesizing up to 60% of cellular RNA. High level rRNA production relies on efficient binding of initiation factors to the rRNA gene promoter and recruitment of Pol I complexes containing initiation factor Rrn3. Here, we determine the cryo-EM structure of the Pol I-Rrn3 complex at 7.5 Å resolution, and compare it with Rrn3-free monomeric and dimeric Pol I. We observe that Rrn3 contacts the Pol I A43/A14 stalk and subunits A190 and AC40, that association re-organizes the Rrn3 interaction interface, thereby preventing Pol I dimerization; and Rrn3-bound and monomeric Pol I differ from the dimeric enzyme in cleft opening, and localization of the A12.2 C-terminus in the active centre. Our findings thus support a dual role for Rrn3 in transcription initiation to stabilize a monomeric initiation competent Pol I and to drive pre-initiation complex formation.
Suggested Citation
Michael Pilsl & Corinne Crucifix & Gabor Papai & Ferdinand Krupp & Robert Steinbauer & Joachim Griesenbeck & Philipp Milkereit & Herbert Tschochner & Patrick Schultz, 2016.
"Structure of the initiation-competent RNA polymerase I and its implication for transcription,"
Nature Communications, Nature, vol. 7(1), pages 1-12, November.
Handle:
RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12126
DOI: 10.1038/ncomms12126
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12126. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.