IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12087.html
   My bibliography  Save this article

How to make a sex chromosome

Author

Listed:
  • Alison E. Wright

    (Evolution and Environment University College London)

  • Rebecca Dean

    (Evolution and Environment University College London)

  • Fabian Zimmer

    (Evolution and Environment University College London)

  • Judith E. Mank

    (Evolution and Environment University College London)

Abstract

Sex chromosomes can evolve once recombination is halted between a homologous pair of chromosomes. Owing to detailed studies using key model systems, we have a nuanced understanding and a rich review literature of what happens to sex chromosomes once recombination is arrested. However, three broad questions remain unanswered. First, why do sex chromosomes stop recombining in the first place? Second, how is recombination halted? Finally, why does the spread of recombination suppression, and therefore the rate of sex chromosome divergence, vary so substantially across clades? In this review, we consider each of these three questions in turn to address fundamental questions in the field, summarize our current understanding, and highlight important areas for future work.

Suggested Citation

  • Alison E. Wright & Rebecca Dean & Fabian Zimmer & Judith E. Mank, 2016. "How to make a sex chromosome," Nature Communications, Nature, vol. 7(1), pages 1-8, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12087
    DOI: 10.1038/ncomms12087
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12087
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li He & Yuàn Wang & Yi Wang & Ren-Gang Zhang & Yuán Wang & Elvira Hörandl & Tao Ma & Yan-Fei Mao & Judith E. Mank & Ray Ming, 2024. "Allopolyploidization from two dioecious ancestors leads to recurrent evolution of sex chromosomes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.